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Abstract— This paper introduces a novel security–oriented
interpretation of Safecharts – a visual formalism originally
developed for safety–critical systems design. Safecharts itselfis
based on Harel’s Statecharts and draws on its unique features
for representing risks against safety due to circumstances
equipment failures. One of these features is the the risk or-
dering relation enabling the provision of additional safeguards
for ensuring safety. Built into the risk ordering relation are
conservative assumptions with respect to any inadequacies in
the risk assessment process. Despite its sole use so far for dealing
with safety, there is no reason why the risk ordering relation
cannot be used to express requirements on any other system
property, including security. The aim of this paper is to show
how this can be achieved and to show that the features of
Safecharts have a natural interpretation in a security context
with similar virtues as in safety. A further contribution outlined
here is the newly developed step semantics of Safecharts central
to modelling of safety and security requirements.

I. I NTRODUCTION

Computer systems are increasingly used in areas where
their failures could have serious consequences in terms
of potential losses. The nature of these losses varies,
ranging from threats to material assets (property, finance
and information) to human life itself. In this respect,
there are many properties such systems should possess,
having a profound influence on the techniques used in their
development, as well as on the manner of their operation and
maintenance. Among them are safety and security which,
alongside availability and reliability, form two defining
characteristics of dependable systems. Conceptually, safety
and security have many commonalities between them, for
example, both properties deal withthreats or risks, one to
life and property and the other to privacy or organisational
or national security [8]. However, safety and security differ
from each other in the nature of failures each is concerned
with, accidental (unintentional) failures in the case of the
former and malicious attacks (intentional failures) in the
case of the latter.

It is usually the case that in practice safety and security
issues are dealt with largely in isolation. Perhaps as a result,
research into computer safety and computer security too
have followed historically separate paths. However, thereis
a growing realisation about the benefits to be drawn from
a greater understanding of the two domains, in particular,
their complementary features and the areas of divergence.
This could be turned into mutual advantage by borrowing
ideas effective in each other and providing alternative but
complementary perspectives.

In this context, this paper investigates the use of
Safecharts [3], a safety–oriented variants of Statecharts
developed especially for the specification and modelling
of safety–critical systems, in the field of security. Unique
features of Safecharts include the maintenance of a clear
distinction between functional and safety requirements,
an explicit representation of failures, mechanisms for
handling them, a safety–oriented classification of transitions
and resolution of any conflict between them in favour of
safer transitions. Fundamental to the above is an explicit
ordering of system states according to their risk levels.
This is achieved through a risk ordering (mathematical)
relation and a concept called risk graph, the latter being an
approach to ensuring conservative assumptions about any
state not covered adequately by the risk assessment process.
Motivation for this paper is the relaisation that the above
risk ordering relation has a more general interpretation and
is not restricted to safety. For example, the risks posed
may concern threats against security, in which case various
features of Safecharts could be given a security–oriented
interpretation. This kind of interpretation could lead to
extended applications of Safecharts in totally different
contexts, security being one of them.

With the above as an objective, this paper illustrates
the use of Safecharts in demonstrating the risk involved
in security policies and requirements, more specifically,
in the field of access control of data security. The Role–
Based Access Control (RBAC) mechanism is adopted for
demonstrative purposes.RBAC is a well-known access
control mechanism that bases access control decisions with
respect to functions, which users are allowed to perform
within an organization. An immediate benefit is the more
intuitive visual appreciation of the underlying security
model. At a technical level, benefits include a systematic
way to counter breaches of security, a way to specify
security requirements on individual transitions by either
prohibiting or forcing their execution, secure initialisation
of states, security–oriented resolution of any unforeseen
nondeterministic execution of transitions and prohibition
of introducing transitions between states posing unknown
security threat levels on precautionary grounds. These are
all designed to enhance two fundamental properties of
computer security, namely confidentiality and integrity.

With this general interpretation of risk, while maintaining
the same basic analytical and modelling framework, this
paper lays, in essence, the foundation for a single integrated
framework for dealing with any combination of system



properties relevant to dependable systems. At this stage, this
capability is limited to safety and security only. This paper
also addresses several novel issues concerning the semantics
of Safecharts, in particular, the construction of risk graphs for
AND states and the definition of its step semantics, especially
in relation to its other unique features.

II. SAFECHARTS

A. Statecharts in Brief

Statecharts is a visual specification formalism introduced
by David Harel [5] for modelling the behaviour of complex
reactive systems. Statecharts is an extension of finite-state
machines with enhanced capabilities such as hierarchical
decomposition of systems states, explicit representationof
concurrency and broadcast communication. Statecharts is a
kind of directed graph, with nodes denoting states and arrows
denoting labelled transitions. Labels of transitions takethe
form e[c]/a, e being the triggering event of the transition,c
a guarding condition anda an action generated precisely if
and when the transition takes place. For a transition to take
place, its source state must be an active state. Once generated,
the actiona is broadcast to the whole Statechart, triggering,
if applicable, other transitions in the diagram. In Statecharts,
there are three types of states:AND, OR and BASIC states.
BASIC states are similar to the states in state-transition
diagrams. BothAND and OR states consist of a number of
substates. Being in anOR state means being in exactly one
of its substates while being in anAND state means being
in all of its substates simultaneously. The substates of an
AND state are indicated by a dashed line and are known as
orthogonalstates. For example, in Figure 1, stateS is anAND
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Fig. 1. An example of Statecharts.

state with two (orthogonal) substatesA and B, the latter two
states being of typeOR. Being in S means being inA and
B simultaneously. StatesD, E, F, G, J and K are BASIC states
that cannot be decomposed into further substates. Thedefault
state, pointed by a dangling arrow, is a substate of anOR state
to be entered if a transition arriving at theOR state does not
have an explicit entry state. In Figurer 1 statesC andG are the
default states ofA and B respectively. At initialisation, state
S is in its default configuration, namely{J, G}. If the event
e occurs, the transitionJ;K takes place. As a consequence,
the stateJ is exited, the stateK is entered and the event
a is generated and broadcasted throughout the Statecharts.
Consequently, the actiona triggers transitionG;F, moving

the system to stateF. As a result, a new configuration of state
S is realised, namely{K, F}.

B. Modelling Safety and Security in Safecharts

Although Safecharts was introduced for addressing safety
concerns, security issues can be also addressed in the frame-
work of Safecharts in the same manner. Thus, Safecharts
features in this work could refer to either of these system
attributes: safety or security. One of the unique features
of Safecharts is the maintenance of two separate layers of
representation. In the safety domain, they have been referred
to as functional layer and safety layer. The same term is
often used in relation to security, despitesecurity layer
being the right term to be used in this context. Likewise,
unless otherwise stated, any statement made on safety applies
equally to security, and vice versa. The aim of the functional
layer is to capture system’s transformational behaviour purely
from a functional point of view, by using Statecharts in
the conventional sense. Conversely, the aim of the safety
layer is to capture the risk involved in such behaviour. It
contains arisk graphof the system’s states and a safety an-
notation associated with any transition between these states.
The separation drawn in this manner between function and
safety properties of the system helps in (i) focusing on
safety matters without being distracted by functional issues,
(ii) evaluating the implications of function on safety and
(iii) ensuring safety provisions for each and every action
involving any risk. Another unique feature of Safecharts,
especially in the safety domain, is its explicit representation
of failures by means of two generic events, namelyε andµ
and some special states denoting the different failure modes
of the system. Theε event signifies a nondeterministic failure
and µ event signifies a recovery action, e.g. a repair of a
faulty component. For more details about the above features,
the reader is referred to [3], [10].

C. The Risk Graph

Fundamental to Safecharts semantics is the explicit
ordering of system states according to their risk levels. This
is achieved through a risk ordering relation, denoted by⊑,
and a concept called risk graph. The definition of⊑ is that
for any two statess1 ands2, s1 ⊑ s2 is true if and only if the
risk level ofs1 is known to be less than, or equal to, the risk
level of s2. This assumes that risk levels are comparable,
either quantitatively or qualitatively. The relation⊑ can
be decomposed into two relations: a partial order relation
4 (the risk level ofs1 being strictly lower than, or being
the same as, that ofs2) and an equivalence relation≈
(risk levels ofs1 and s2 are known, or are assumed, to be
identical).

The concept of risk graph incorporates conservative
assumptions about states not covered adequately by the
risk ordering relation⊑, possibly due to gaps in the risk
assessment process. This can be a result of oversight,
omissions or lack of knowledge about the relative risk levels
of these states. An incomplete risk assessment process, for
example, could result in a set of states not receiving adequate



attention and not being comparable with other states. This
might result in some states being non–comparable by
the ⊑ relation with a large number of other mutually
comparable states. Figure 2(a) gives an example, where
state H happens to be non–comparable with statesD, G,
I andJ, and stateD is non–comparable with statesI , G andH.

The risk graph enhances the risk ordering relation⊑ by
applying the concept ofrisk bandssuch that each state in
the risk graph belongs to a unique risk band and every
pair of distinct states belonging to the same risk band is
there either because the states concerned are comparable by
the ≈ relation or non–comparable by⊑, the latter kind of
states are known asrisk-noncomparablestates. Given the
risk ordering relation⊑, and assuming that risk bands are
indexed numerically from 1 to somen, risk bands of states
may defined according to the following set of rules:
(1) States in the highest risk bandn consists of exactly (a)
maximal elements (states) in the partial order relation4 but
excluding those elements, if any, which are comparable by
≈ with any of the rest of elements in4, and (b) elements
which are comparable by≈ with those elements defined in
(a) above.
(2) Any state s with just a single immediate (distinct)
successor state, which is in risk bandi according to4, is
in risk band (i-1). However, if a states has more than one
immediate successor state, then it has a risk band one less
than the lowest of the risk bands of its immediate successor
states.
(3) For any statess1 and s2, if s1 ≈ s2 then both statess1
ands2 are in the same risk band.
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Fig. 2. Risk bands in the risk graph.

Figure 2(b) illustrates the above rules using the banded
version of the risk graph given in Figure 2(a). Note that as
a consequence of the position of stateH in the risk graph,
stateH can be now compared to any state that belongs to a
different band. In other words, stateH can be considered as
a higher risk state than statesF, D, G and I. However, state
H and stateJ remain risk-noncomparable.

D. Risk Graph of AND state

Unlike OR states, the construction of risk graphs ofAND

states is complicated because of the presence of orthogonal
states. In anAND state, risk ordering in an individual or-
thogonal childOR state, without paying due regard to risk
ordering in adjoining childOR states, no longer makes sense.
Thus, a risk graph of anAND stateScan be constructed using
two alternative approaches:

1) Directly, that is, explicitly through a risk assessment
based on the states (tuples) of an equivalentflattened
OR stateS′.

2) Indirectly, that is, using a subsidiary risk ordering
relation⊑β defined in terms of the risk band indices
of individual orthogonal risk graphs. This is a process
which does not require the security engineer to flatten
the AND state in defining the risk ordering relation for
the AND state concerned as a whole.

An AND stateS, with a set of direct substatesC, can be
flattened into an equivalentOR stateS′ whoseC′ consists
of tuples drawn from the unordered Cartesian product of all
orthogonal states inC. Each such tuple consists of a number
of parallel states, equal to the number of orthogonal states
in C, and corresponds to a conventional state. The transitions
associated with the equivalentOR state can be derived
using the canonical mapping approach of [4]. For example,
Figure 3(a) shows anAND state with two orthogonal substates
M andN, while Figure 3(b) shows the equivalentOR state as
well as its derived transitions.

In the case of the direct approach, the risk ordering relation
⊑ can be defined over the setC′. The risk graph is then
constructed in the same manner as described in Section II-
C. In the case of the indirect approach, the subsidiary
risk ordering relation⊑β is defined first and then the risk
ordering relation⊑ is obtained by picking the respective
states residing in the corresponding risk bands specified in
⊑β . In this paper, we adopt the direct approach.

E. Transitions and Nondeterminism

Based on the risk graph, Safecharts classifies transitions
according to the nature of risks they carry and, accordingly,
extends the labelling of transitions with additional guards
and enforcement conditions. Thus, transitions belong to
three categories:safe or secure (from a higher risk state
to lower risk state),unsafeor unsecure(from a lower risk
state to higher risk state) andneutral (between states of
the same risk level). Being an exhaustive classification,
Safecharts disallows transitions between risk-noncomparable
states. The reasoning behind this principle is prudence and
it is intended to prompt the designer to resolve, as a matter
of discipline, the risk levels of any non–comparable states
belonging to the same risk band in the risk graph, if a
transition is desired between them.

Transition labelling in Safecharts has the general form
e[c]/a [l, u)Ψ[G], with e, c and a remaining the same as
understood in Statecharts. Thee[c]/a part of the label is
associated with the transitions represented in the functional
layer. The[l, u) is a right-open time interval from a lower
bound l to an upper boundu. The Ψ is a safety or security
enforcement pattern imposed on the execution of the
transition.G is a safety or security clause; a predicate that
specifies under which conditions the transition must, or must
not, execute. TheΨ stands for one of the alternative symbols
Á and Â, and signifies one of the following enforcements:
(a) aprohibition enforcement, denoted byÁ, such that given
an unsafe transitiont, the labelt Á [G] signifies that, despite
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Fig. 3. An AND state and its equivalent flattened OR state.

being enabled by its triggering event, the transitiont is
forbidden to execute as long asG holds; (b) amandatory
enforcement, denoted byÂ, such that given a safe transition
t, the label t[l, u) Â [G] signifies that, irrespective of the
occurrence of its triggering event, the transitiont is forced
to take place within the time interval[l, u) wheneverG
holds. If the interval[l, u) was not explicitly specified then
t is assumed to bespontaneousand is forced to take place
as soon asG holds.

Transitions in Safecharts are associated withrisk distances.
The risk distance of a given transition is calculated by
subtracting the risk band index of the source state from
that of the target state. It follows from the above that safe
transitions have negative risk distances, unsafe transitions
positive risk distances and neutral transitions zero risk dis-
tances. In Figure 2(b), an unsafe transitionF;H will have
a risk distance of+3, while a safe transitionH;G will
have a risk distance of−2. Risk distances are used for
prioritising conflicting transitions. Two transitions aresaid
to be in conflict if they share the same source state and
their triggering events occurred at the same time. Safecharts
resolves the nondeterministic choice between cinflicting tran-
sitions by using their risk distance such that the smaller the
risk distance of a transition the higher is its priority. If two
transitions have the same risk distance, Safecharts evaluates
their cumulative risk distances by considering theirfuture
transitions, for more details see [3], [10]. Nondeterminism
may still continue to persist even with future transitions.
This kind of nondeterminism is considered a safe (secure)
nondeterminism since all outcomes are identical in terms of
the risks involved.

III. T HE STEP SEMANTICS OF SAFECHARTS

There exists many different semantics for Statecharts,
centering mostly around the concept ofstep. The step
semantics has been a much debated issue, primarily because
of the anomalous and counter–intuitive behavioural patterns
of Statecharts resulting from some of the interpretations.
These debates concern the central issue as to whether the
changes, such as the generated actions or updating values
of data items that occur in a given step, should take effect
in the current step or in the next step. The reader is referred
to [2], [9], [11] for more details about the different step
semantics and the problems associated with their definitions.

It is important in this respect to define the step semantics

of Safecharts in a clear and simple manner. The aim here
is to adopt the most appropriate standpoint in relation to
the sole concern of Safecharts, namely the design of critical
systems from whatever the perspective, whether it is from
safety, security or any other system attribute. The step
semantics of Safecharts retains certain characteristics of
the conventional step semantics such as the synchronous
hypothesis, while at the same time maintaining an intuitive
relationship between external and internal events so that it
corresponds to the operational reality of reactive systems.
It is based on the treatment of external and internal events
in an identical manner, but it also requires the introduction
of the concept ofpostponed transitionsand two separate
notions of time, namely asynchronous timemetric and a
real time metric. The behaviour of the step is associated
with a clock that maps the time values belonging to the
above two time metrics. The step semantics in Safecharts
is based on the synchronous time model ofSTATEMATE

[6]. The system evolves from one step to the next after
considering a set ofinput eventsat consecutive intervals
separated by a granularity of∆ time units, referred to as
∆-interval. The synchronous time model has the advantage
of (a) avoiding infinite loop of triggering transitions enabled
by infinitely generated internal events, and (b) preventing
the occurrence ofracing conditions.

The set of input events at the end of the current∆-interval
consists of the external events sent by the environment during
the current interval as well as the internal events generated by
the execution of the previous step. Input events last only for
the duration of a single∆-interval. Once the step has been
taken, all input events are consumed and the set of input
events becomes empty. In its initial state (configuration),the
system waits for∆-interval for the environment to produce
external events. At the end of the∆-interval, the input events,
which at this stage consist of only the external events sent by
the environment, are sensed and reacted to by executing the
initial step. As a result of the initial step, the system moves to
a new configuration (provided that the step is a ‘status step’
in the sense discussed later), the generated internal events,
if any, are added to the set of input events of the next step
and the clock is incremented by∆-interval. The set of input
events of the next step consists of the internal events, if any,
generated by the initial step together with the external events,
if any, received by the environment during the preceding∆-
interval. For example in Figure 4, the set of input events of
step1consists of the internal evente1, generated bystepinit ,
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Fig. 4. A general view of the step semantics with generic events.

as well as the external eventse2 and e3. At the end of the
∆1-interval, step1 is executed and all the input events are
consumed. This process continues in each step.

In the cases where there are no external events generated
by the environment during the∆-interval prior to the step,
the set of input events comprises only the internal events
generated in the previous step. In this case, the step is
taken by consuming all input events and triggering relevant
transitions. Consequently, new internal events might be
possibly generated for the next step, leading to a new
configuration. In the case where there are neither external
nor internal events from the previous step, that is, where
the set of input events is empty, after∆-interval the step
is taken anyway without executing any transition and,
consequently, with no change in the configuration of the
system. For the system to move to a new configuration,
the environment has to produce new external events during
the subsequent∆-intervals. In this connection, our step
semantics distinguishes two types of steps, namelystatus
steps andneutralsteps, the former causing a material change
in the configuration of the system while the latter causing
no change.

Analogous to several other definitions of step semantics,
the step semantics of Safecharts eliminates many undesirable
features. This concerns the use of negated events and
instantaneous states. Safecharts also maintains a clear
causality ordering and global consistency. Similar to the
semantics of Statecharts introduced in [6] and adopted by
many other variants, the execution of a step in Safecharts
takes zero time unit, and thus transitions triggered by input
events are taken instantaneously once the step is taken.
However, as stated in [7], the synchronous hypothesis
does not reflect the intuitive operational reality of reactive
systems, where transformations between the states of the
system usually take somereal time, during which the
environment can send some external events. In order to
reconcile the mismatch between the synchronous hypothesis
and the reality of transformational behaviour of reactive
systems, we propose two notions of time metrics: a
synchronous-timemetric and areal-timemetric. The former

is a concrete time which is represented by a system clock
that is constructed by a sequence of∆-intervals, while
the latter is a ‘true time’ which is independent from the
representation of the system clock. Consequently, the
evolution of our step can be seen from two different
perspectives: the synchronous-time metric and the real-time
metric reflecting the temporal reality of the transformations
between the states of the systems. Accordingly, in the
synchronous-time metric, the duration of the step, denoted
by σ, is always taken to be zero (in other words,σ is
too fine to be detected), while in the real-time metricσ is
either zero in the case of the step being neutral step, or
a non–zero constant in the case of the step being a status step.

With reference to the real-time metric, the assumption
underlying the adoption of the synchronous hypothesis is
that, once a step is taken at the end of a∆-interval, any
external events sent by the environment during theσ time
unit are postponed until the elapse ofσ interval. Due to their
importance in modelling the safety aspects of the system’s
behaviour (e.g. equipment failures and breaches of security),
it is a feature in Safecharts that generic events, namelyε and
µ, must be taken as soon as they occur. Thus, in this context,
generic events are treated differently from other input events,
and are considered as interrupt events. Once they occur and
being added to the set of input events, the step does not
wait until the end-time of the current∆-interval, but rather
executes immediately consuming all input events gathered
so far. The∆-interval during which generic events occur is
called an irregular interval, and denoted by∆′. The step
that follows∆′ is called aninterrupt step. The behaviour of
interrupt steps is similar to that of other steps except that
their execution time is not scheduled but rather occurs as
a result of an interrupt situation. For example, in Figure 4,
step5 and step7 are two interrupt steps executed as a result
of the occurrence of eventsε andµ respectively.

IV. SAFETY AND SECURITY

Alongside availability and reliability, safety and security
are two closely related properties of dependable systems.
The design of dependable systems is often required to satisfy



several of these critical properties simultaneously [13].There
is a growing interest in the degree to which techniques
from one domain could complement, or conflict with, those
from another. Possible interrelationships between safetyand
security have been the objective of much research, most
of which has been in the area of incorporating security
techniques in the safety domain. This includes the early work
[12] on possible uses of security kernels in relation to safety.
Another example is the work [15], where a non–interference
concept, used in describing security properties was used in
describing safety. However, reliability oriented safety mecha-
nisms such as fault-tolerance have also been used in the field
of security. For example, in [16], the possibility of extending
fault-tolerance techniques to tolerate intentional attacks rather
than accidental faults has been investigated. In this paper,
we investigate the applicability of Safecharts and its various
safety–oriented techniques and mechanisms for dealing with
security issues. More specifically, we examine the use of the
concept of risk graph, and the various safety enforcement
applied to transitions, in the field of data security. Note that
our discussion in this section applies to security only.

A. Delegation in Role–Based Access Control (RBAC)

In computer security, access control is the concept of
managing authorisations, by which resources (objects) areac-
cessed by users (subjects) under a specified set of operations.
Subjects can access objects under the rules stated by the
access control mechanism that describes the security policy
of their organization.RBAC is a well-known mechanism that
provides a high level view of access control.RBAC is based
on the idea ofrole – a representation of job functions a
subject performs in an organisation [14]. Unlike in traditional
access control mechanisms, such as those used in operating
systems,RBAC assigns access rights to the roles rather than
to individual subjects directly. In other words, the subjects
are able to access the objects only by virtue of their roles.
A subject can be associated with more than one role and a
role can be assigned to many subjects.

Authorised access rights of different roles to objects is
maintained in a form similar to an Access Control List,
against which requests by subjects to perform various opera-
tions or tasks (e.g awrite operation) on an object are checked.
If a role authorising the access of the object concerned by the
required operation is found, the access right associated with
this role is granted to the subject requesting it, otherwise,
the access right is denied. The model ofRBAC permits
the temporarydelegationof access rights by one subject to
another in order to perform one or more specific functions.
Figure 5(a) depicts such a scenario in the context of an
engineering organisation, where a managerP delegates some,
or all, of his authorised tasks (access rights) to a subordinate
engineerQ, enablingQ to performP’s tasks on his behalf.
The managerP, known as the delegating subject, can claim
back his role by a process known asrevocation, the case in
which the engineerQ, known as the delegated subject, loses
his association with the manager role, and thus, all access
rights granted by that role.

The process of delegation is vulnerable to potential se-

curity risks because there is no distinction as to whether
a subject requesting a certain mode of access is doing so
in the capacity of his own role, for example, as originally
assigned by the security officer, or in the capacity of a role
acquired through a delegation. For example, in Figure 5(a),
the manager’s role, denoted byM Role, is authorised to
accessObject1 with the write and read operations and to
accessObject2 with only the read operation. The engineer’s
role, denoted byE Roleis authorised to accessObject2 with
the write and read operations but cannot accessObject1.
In this case, from the object’s point of view, there is no
demarcation between the cases whenObject1 is accessed
by a manager using his original role, that isM Role, and
when it is accessed by an engineer exercising the same role
in a delegated capacity. The risks of such delegation lie in
potential ‘undesirable behavioural patterns’ of the delegated
subject. Although such a behaviour could be unintentional in
most cases, it still carries a degree of risk, possibly, due to the
lack of competence of the delegated subject, his unfamilarity
with the delegated task and/or sensitivity of the delegatedtask
itself, giving rise to a greater likelihood of errors. Such risks
may not be easily quantifiable or assessed.

B. A Case Study

In order to illustrate the use of Safecharts in modelling
a delegation scenario inRBAC , let us consider, for reasons
of space, a small part of the diagram shown in Figure 5(a),
namely the relationship between theObject1 and theM Role.
The delegation used in our example is assumed to be
temporary, i.e. the subject is delegated a role for a certain
period of time, after which the role is revoked, andtotal,
i.e. the delegation includes all access rights associated with
the role being delegated. We also assume agrant dependent
revocation, i.e. the delegated role can be only revoked by
the delegating subject [1]. Moreover, after delegating it to
another subject, the delegating subject cannot use his original
role unless the delegation is revoked.

The safety (security) layer of Safecharts for the example
above is shown in Figure 5(b). TheObject1 is represented
as anAND state, consisting of two orthogonal states, namely
Statusand M Role. The former represents the status of the
object in terms of the operations applicable to it, while the
latter represents the different capacities ofM Role in which
the object can be accessed. The stateStatusconsists of three
substates, namelywritten, read and idle, each state denoting
that the object is being written in to, is being read and is
in idle state respectively. The stateM Role consists of two
substates, namelydelegatedand original, denoting whether
the object is being accessed by a delegated role or by an
original role respectively. According to this model, the object
can be in any of its status states, for example inidle, while
its accessiblity is being determined by any of the two states:
delegatedor original.

Note that the order in which states are placed in the
Safecharts diagram vertically corresponds to an implicit risk
ordering. For example, the object being in stateidle is consid-
ered more secure than being in stateread, and that being in
stateread is more secure than being in statewritten. In other
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words, a risk ordering of the form (idle 4 read 4 written)
is assumed. Similarly, the ordering of statesdelegatedand
original inside stateM Role assumes a risk ordering of the
form (original 4 delegated), indicating that the object being
accessed by an original role is considered more secure than
being accessed by a delegated role. In Figure 5(b), statesidle
andoriginal are thesecuredefault states of statesStatusand
M Role respectively. Thus, at initialization, the object is to
be set to its secure default state, that is, to the configuration
(idle, original). The transitionoriginal;delegatedin Fig-
ure 5(b) is an unsafe (unsecure) transition with a prohibition
enforcementÁ [G1]. This means that under certain security
concerns, denoted by the security clauseG1, the transition
is prohibited from taking place despite the occurrence of its
triggering eventdel. For example,G1 can be a statement in
the security policy denying such delegation. However, the
transition delegated;original is a safe (secure) transition
with a mandatory enforcement[l, u) Â [G2]. This means
that under certain security concerns, denoted by the security
clauseG2, the transition, representing a revocation of the
delegated role, is forced to take place within a specified time
interval [l, u) despite the absence of its triggering eventrev.
For example,G2 can be the occurrence of the ‘undesirable
behaviour’ mentioned in Section IV-A.

In order to construct its combined risk graph, i.e to show
in detail the risks posed by different combinations of states,
we use the direct approach, introduced in Section II-D,
which involves flattening theAND state Object1 to its
equivalentOR state. The set of substates of the equivalent
OR state, resulting from such a direct specification of
relative risk levels, consists of six states (pairs), namely
{(idle, original), (idle, delegated), (read, original), (read,
delegated), (written, original), (written, delegated)}.
Equivalently, as an assessment of relative risk levels of such
states can be assumed: (idle, original) 4 (idle, delegated),

(idle, original) 4 (written, original), (idle, delegated) 4

(read, delegated), (read, original) 4 (read, delegated) and
(idle, original) 4 (written, delegated). Figure 6(a) represents
the graph of the risk ordering relation, while Figure 6(b)
represents the equivalent banded risk graph. Possibly due
to states (written, original) and (written, delegated) not
receiving sufficient attention in the risk assessment process,
they are shown to be non–comparable by the⊑ relation
with many other states. As a precaution against a possible
inadequacy in the risk assessment process, they have been
placed conservatively in the highest risk band of the risk
graph. This could be seen as a flag, alerting the designer to
reconsider the risk levels of these states if the circumstances
do not warrant such an interpretation.

As was mentioned in Section II-E, Safecharts disal-
lows transitions betweenrisk-noncomparablestates. Though
they may appear, according to theAND state shown
in Figure 5(b), transitions between risk-noncomparable
states, such as those between (written, original) and (writ-
ten, delegated), which are not permitted by the risk
graph in the security layer. Moreover, because of the
positions of their source and target states in the risk
graph, transitions (idle, original);(written, delegated) and
(idle, original);(read, delegated) have equal risk distances.
An implication of this is that in the event of a conflict,
selecting either of these transitions is considered as a secure
nondeterminism. If this is unacceptable on security grounds,
then the designer needs to verify the security policy and/or
the relative risk levels of the two target states, namely
(written, delegated) and (read, delegated). It may also be
the case that no roles are to be delegated while in the middle
of higher risk operation. This may be a case to be borne in
mind when including pairs such as (read, original) and (read,
delegated) in the ⊑ relation, thus explicitly sanctioning, or



barring, transitions between them relying on built-in rules
of Safecharts. An exception for this would be a situation
involving training, where a delegation of a role in the middle
of an operation may be justifiable, but even in this case,
consistency across the operations may need to be observed
so that the delegation concerns the particular operation being
exercised by the delegating subject and not any arbitrary
operation. Though this situation has been precipitated by the
manner of derivation of banded risk graphs from the risk
ordering relation⊑, this might be another instance where the
designer needs to verify the appropriateness of the security
policy being followed. Thus, the risk graph is not merely a
form of representation of risk but also a means of refining
the risk assessment process itself.

V. CONCLUSION

The objective of this paper has been to introduce a novel
use of Safecharts in the specification and modelling of
security requirements. Safecharts was originally developed
as a safety–oriented variant of Statecharts explicitly for
safety–critical systems design. Nevertheless, its various
features and mechanisms used to ensure safety are found
to be equally valid in the security domain. This has been
demonstrated in this paper using, for illustrative purposes, a
simple but realistic example of delegation of access rights
in data security as understood inRBAC. In this respect,
a state–based model of delegation inRBAC allows the
evaluation of the current state of access rights in granting, or
denying, such rights based on security considerations and the
current assignment of roles. Various features of Safecharts,
such as its unique concept of risk graph capturing the risks
posed by different states, the security–driven enforcement
of transitions and the imposition of a conservative security–
oriented default assumptions on security risks of states,
have been put to use in modelling security requirements and
evaluating their effectiveness, as well as, in enforcing some
desirable properties such as integrity and confidentiality. As
was the case in the safety domain, built in mechanisms and
assumptions are designed to prompt the designer to question
their validity in the context of the specific application being
dealt with, thereby enhancing the overall security of the
system.

Correct interpretation of Safecharts, both in the context of
security and safety, requires a sound understanding of several
important aspects of its semantics. Prominent among them
are the risk graph ofAND states and the definition of its step
semantics. These new developments have been introduced
in this paper. On–going and future research is aimed at
modelling more complex security models in Safecharts and
the extension of Safecharts so that it can serve as a single
unified framework for the specification and modelling of
dependability properties, such as safety and security, both
in isolation or in any form of combination.
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