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Abstract

This paper proposes a novel variant of Statecharts,
called Safecharts, especially for use in the speci�cation
and the design of safety critical systems. The objective
is to provide a sharper focus on safety issues and a sys-
tematic approach to deal with them. This is achieved
by making a clear separation between functional and
safety requirements. A novel feature of Safecharts is
the safety annotation, which proposes an explicit or-
dering of states according to risk level. Transitions are
classi�ed according to their risk nature and given a new
priority scheme for their execution in the event of any
non-determinism. Railway signalling system, a well-
known case study, is used as an example to demonstrate
some features and semantics of Safecharts.

1 Introduction

The development of critical computer systems invari-
ably requires the use of rigorous techniques in their
speci�cation, design and analysis. Statecharts [4] is
widely used as a powerful framework for designing real-
time reactive systems. Although the Statecharts for-
malism supports the development of intuitive graphi-
cal speci�cations of such systems, Statecharts as orig-
inally proposed have not been adequate for certain
tasks. This has led to the proposal of many di�er-
ent Statecharts variants to overcome such inadequa-
cies [1]. Since most of the work related to specifying
safety systems is concerned about the change of sys-
tem states, and their behavioural pattern during the
operation of the system, an advantage of Statecharts is
that they provide a clear view of the system states and
their transformational behaviour.

This paper introduces an extended version of Stat-
echarts, called Safecharts, for use in the speci�cation

and the design of safety critical systems. The main
objective of Safecharts is to provide a sharper focus
on safety issues and a framework that forces a dis-
ciplined approach to their treatment. The approach
makes a clear separation in its representation between
functional and safety requirements. The aim is to en-
sure that safety issues and behaviours of the system
are addressed and analysed thoroughly without being
distracted by functional design issues.

A typical Safechart representation consists of two
separate layers, one dealing with functional behaviour
under normal operational conditions and the other
dealing with the safety features required under both
normal operational conditions and adverse conditions.
The two layers are maintained in the form of separate
diagrams so that they can be reviewed separately, ide-
ally by di�erent experts. They can be superimposed
to form a master diagram, which can be used in exam-
ining the interactions between function and safety and
the behaviour of the overall system.

In Safecharts, states are ordered according to their
risk level. This ordering enables a more meaningful
de�nition of default states, namely as the states of the
lowest risk level, referred here by safe default states.

Another new feature of Safecharts is the classi�ca-
tion of transitions according to the risk level of their
target states and the provision of a new priority scheme
for their execution. The aim here is to prevent non-
determinism becoming a cause for concern from the
safety point of view and to resolve it by giving pri-
orities to competing transitions on the basis of safety
consideration. The concept of safe non-determinism
is introduced to represent situations where the non-
deterministic modelling of the system has no repercus-
sions on safety. In the safety representation, transitions
are annotated with prohibition and mandatory safety
clauses in order to constrain transition execution and
to ensure the safe evolution of the system.

In order to resolve any resource contention, safety



annotation also makes explicit the role of each system
component either as a consumer or a resource. The
application of Safecharts is illustrated using Railway
Signalling as a case study. Railway signalling has been
extensively used in many safety related work [11, 16]
and constitutes, therefore, a kind of benchmark for the
validation of the Safecharts approach.

2 Statecharts

Statecharts are a visual speci�cation formalism [4, 6]
intended for speci�cation and design of reactive sys-
tems. Statecharts are a kind of directed graph, with
nodes denoting states and arrows denoting labelled
transitions. Labels take the form e[c]/a, e being an
event that triggers the transition, c a condition that
guards the transition when e occurs, and a an action
that is carried out precisely if and when the transition
takes place [5]. This allows a tree-like structuring of
states, explicit representation of parallelism and com-
munication among parallel components. With the re-
sulting concept of \depth" and superstate-substate re-
lation, the superstate at the top level becomes the spec-
i�cation itself. Statecharts extend conventional FSM's
by and/or decomposition of states, inter-level transi-
tions and an implicit inter-component broadcast com-
munication.

Once the transition has taken place, the action a is
generated and broadcast to the whole Statechart, trig-
gering, if applicable, other transitions in the system.
Each part of the transition label is optional. That is,
if S2 in Figure 1 is active then the realization of the
condition c is enough to trigger the transition between
S2 and S1.
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Figure 1: Statecharts transitions between states.

There are three types of states, and, or and basic.
Both or-state and and-state consist of a number of
substates; being in an or-state means being in exactly
one of its substate, while being in an and-state means
being in all of its substates simultaneously. Substates
of an and-state are indicated by a dashed line and
sometimes are called parallel states. A basic state is
the state which has no substates.

For example, the superstate S in Figure 2 is an and-
state which has to be in both substates S1 and S2 si-
multaneously. However, S1 is an or-state and, hence,
it must be either in C or in D. S2 is also an or-state

and it must be either in E or in F, where being in F
means being in A and B simultaneously.

The default state, pointed by an arrow, is a substate
of an or-state that is to be entered if any transition
arriving at the or-state does not have an explicitly
speci�ed entry state. For example, in Figure 2, both D
and E are default states for S1 and S2 respectively.
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Figure 2: Example of and/or decomposition of states.

Orthogonality is a distinctive feature of Statecharts.
It is the term used to describe the and decomposition,
where no transition is allowed between the substates
of an and-state. Orthogonality captures concurrency;
entering an and-state means entering its every orthog-
onal component. It also captures synchronisation be-
cause a single event can cause simultaneous occurrences
of several other events. For example, the occurrence of
event n in Figure 2 causes the transformation from C
to D in S1 and the transformation from F to E in S2
to occur simultaneously.

The semantics of Statecharts has been introduced
in [6]. It has been endowed with a step-semantics
in [13], which enforced causality, synchrony hypothe-
sis and global consistency. Despite its success in mod-
elling, the syntax and semantics of Statecharts restricts
its usage. In order to overcome these problems, several
variants of Statecharts, such as RSML [8], have been
proposed. An overview of these variants and their ap-
proaches to solve these problems is presented in [1]. For
further reading on Statecharts semantics, the reader is
referred to [1, 5, 6, 9, 15].

3 Safecharts

Safecharts are an extended version of Statecharts with
some unique features. Unlike other Statecharts vari-
ants, Safecharts are intended for use exclusively in the
speci�cation and design of safety critical systems. The
aim is to provide a sharper focus on safety issues of
the system. This is achieved by making a clear separa-
tion between functional and safety concerns. With this
in mind, Safecharts maintain two kinds of behavioural
representation:
Functional representation:

This deals with the representation of the states of



the system and its components, as well as their trans-
formational behaviour, according to the functionality
of the system. This conforms with the conventional
use of Statecharts.
Safety representation:

This is an extension to Statecharts and consists
of an annotation of safety features and requirements.
Other main features of Safecharts are:
1. Special states to identify correct function and mal-
function of components and generic events between
them to identify component failures and repairs.
2. An ordering of system states according to their rel-
ative risk levels. Mathematically, this takes the form
of a risk ordering relation and is denoted by v.
3. Two kinds of safety clause, each giving an additional
condition or a constraint on the transition between sys-
tem states that di�er in risk levels: a) a condition in-
hibiting transitions from low to high risk states, b) a
timing constraint in the form of a mandatory deadline
on transitions from high to low risk states. The latter
kind of transition follows the delivery of a service and
is intended as a safety mechanism to avoid imminent
failures.
4. Representation of resource dependencies in order
to resolve any resource contention. This is achieved
by making explicit the role of each system component
either as a consumer, e.g. an operator request, or a re-
source, e.g. an equipment or a sensor and by de�ning
their interaction.

3.1 Malfunction and repair

Systems and components provide the services expected
of them only when they are functioning correctly, but
they can fail non-deterministically at any time. The
nature of these failure can vary; a detailed discussion
may be found in [10]. In order to represent failures,
but without distinguishing between di�erent kinds of
failures, we introduce for each component two special
states, in and out, and two special kinds of generic
events, " and �. in represents the component state in
which it is functioning normally and out represents
the state in which it is malfunctioning. An " event
denotes a failure generated internally or by external
interference. However, from component's prospective,
a failure is always non-deterministic. � event denotes
a maintenance action intended to �x a failure of a sys-
tem component. Figure 3 shows two possible states
of a component; the " event transforms the component
state from the operational state in into the out-of-order
state out. The detailed structure of " and � events is
not of any concern; what is important is their presence
or absence. The same applies to the cause and the
nature of this failure but, obviously, not to its conse-

quences.

It follows from the broadcasting property of Stat-
echarts that an occurrence of a generic event can af-
fect the internal transitions of the system component.
Generic events can be complemented with additional
conditions and, furthermore, they can result in actions
elsewhere within the system. If it is necessary to iden-
tify precisely di�erent failure modes, then the repre-
sentation can be extended to include several di�erently
labelled out states and a range of " events.

εµ

Component
OUT

IN

Figure 3: Generic events of a component.

3.2 Ordering of states according to risk

States in Safecharts are ordered according to their rel-
ative risk level. In diagrams, higher risk states are
placed higher in the Safechart than lower risk states.
Mathematically, this takes the form of a risk ordering
relation on a set of states S . It is denoted by v such
that for two states s1 and s2 in S , s1 v s2 is true if and
only if the risk level of s1 is known to be less than, or
equal to, the risk level of s2. An underlying assumption
here is that risk levels can be quanti�ed. This may be a
di�cult, or impossible, but we rely on domain experts
in de�ning the relation v. The relation v may not nec-
essarily be symmetric or antisymmetric, but there can
be symmetrical pairs in v, denoting states which are at
the same risk level. The relation v can be represented
by means of two relations: a partial order relation 4

and an equivalence relation � on the set of states S .
For any two states s1 and s2 in S , s1 4 s2 is true if and
only if the risk level of s1 is strictly lower than of s2,
unless s1 and s2 happen to be the same state. Simi-
larly, for any two states s1 and s2 in S , s1 � s2 is true
if and only if the risk levels of s1 and s2 are known, or
are assumed, to be identical.

Two states s1 and s2 are said to be comparable by v
in terms of risk if and only if s1 v s2 or s2 v s1. that is,
their risk levels are known to be identical, or the risk
level of one state is lower than that of the other. Oth-
erwise s1 and s2 are said to be non-comparable through
v in terms of risk. From our point of view, the re-
lation v is a representation of our knowledge, or the
lack of it, about the relative risk levels of states. For
example, states (s1; s2), (s3; s4) and (s3; s2) in Figure 4
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Figure 4: Decomposition of a risk ordering relation.

are comparable in terms of risk, while (s4; s5) are non-
comparable.

Figure 4 also illustrates the decomposition of a risk
graph into a partial order relation4 and an equivalence
relation �. Obviously the partial order relation 4 is
acyclic and can be de�ned as the re
exive closure of a
precedence relation �, such that: � = vsym � v�1,
where vsym and v�1 are respectively the symmetric
closure and the inverse relation of v. In other words,
4 = id S [ � where id is the identical relation on S .
Knowing 4, the equivalence relation � can be estab-
lished as: � = v � 4. Given that s1 � s2, we say
that s1 is of a lower risk level than s2 or, conversely,
that s2 is of a higher risk level than s1.

3.3 Diagrammatic Representation

Being devoted to speci�cation and deign of safety crit-
ical systems, Safecharts allow separate representation
of functional and safety requirements. Separated re-
quirements are represented in the form of two separate
layers, one dealing with the functional behaviour under
normal operational conditions, and the other dealing
with safety features required under both normal oper-
ational conditions and adverse conditions. The safety
layer facilitates the study of safety concerns of the sys-
tem without being distracted by the detailed descrip-
tion of its functional behaviour. The two layers can be
superimposed to form a master diagram, which can be
used in the study of interactions between safety and
function and the behaviour of the overall system.

The functional layer conforms fully with the conven-
tional Statecharts and describes the transformational
behaviour of the component concerned in providing the
service expected of it. However, any transformational
behaviour addressing safety requirements does not ap-
pear in this layer but in the safety layer of the compo-
nent.

In diagrams, the position of every state in both lay-
ers is the same and conforms with its risk level rela-
tive to other states, thus, facilitating the integration

of di�erent layers. The example in Figure 5 illustrates
the separate representation of functional and safety re-
quirements, the layers being labelled as F and S respec-
tively. State A is considered to be of a higher risk level
than the state B but in the same risk level with the
state C. In other words, B 4 A and A � C .

The ordering of states according to their risk level
gives a new meaning to the default state. In Safecharts,
default states, referred here as the safe default states,
are determined according to their risk level rather than
their functionality. The safe default state of a com-
ponent must therefore be one of its safest states. In
Figure 5, the state B is the safest state and, there-
fore, is selected as the safe default state. In the safety
layer, transitions are annotated with a safety clause; a
detailed discussion follows in the next section.

3.4 Transitions in Safecharts

As in Statecharts, the set of transitions is denoted by
T and is de�ned as a subset of the set S � S � L, S
being the set of states and L a set of labels. Given
that t = (x ; y ; l) is a transition, source(t) = x and
target(t) = y denote, respectively, the source and the
target states of t . We sometime refer to t also as x ; y .
According to the nature of their risk, Safecharts clas-
sify transitions into three categories: safe, unsafe and
neutral. Safe transition is one whose source state is in
higher risk level than its target state. Unsafe transi-
tion is one whose source state is in lower risk level than
its target state. In neutral transitions the source and
target states are at the same risk level.

The above are the only kinds of transition permitted
in Safecharts and, thus, exclude transitions between
states which are non-comparable in terms of risk. In
practical terms, this restriction forces the designer to
resolve, as a matter of discipline, the risk levels of any
non-comparable states, prior to introducing transitions
between them. This is because the presence of non-
comparable states is a sign of an incomplete hazard
and risk assessment and it is not prudent to introduce
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Figure 5: The two layers of Safecharts

any transition between such states without knowing
accurately the risks involved in its execution.

Transitions labels in Safecharts have an extended
form:

e [fcond ] =a [l ; u) 	[G ]
where e is a triggering event, fcond is a functional
guarding condition, a is an action event, [l ; u) is
a \right-open" time interval with an inclusive lower
bound l and an exclusive upper bound u and 	[G ] is
a safety guarding enforcement on the transition. For
convenience, we sometime omit label components when
they are irrelevant, or are not essential, to the discus-
sion.

A transition t is said to be enabled if source(t) is ac-
tive, the system continues to remain in that state, the
triggering event of t occurs and its functional guard-
ing condition is true. The enabling time of a transi-
tion t , denoted by EnTime(t), is de�ned as the ear-
liest time when all the above become true. The time
interval [l ; u) is a real-time constraint on a transition
t and imposes the condition that t does not execute
until at least l time units have elapsed since it most re-
cently became enabled, that is, since EnTime(t), and
must execute strictly within at least u time units of
EnTime(t). If l and u have not been speci�ed explicitly
then the transition is assumed to have an open-ended
[0;1) time constraint.

The 	[G ] is a safety enforcement on the transition
execution and is determined by the safety clause G .
The safety clause G is a predicates which speci�es un-
der which conditions a given transition t must, or must
not, execute. For each safe or unsafe transition, 	 is a
binary valued constant, signifying one of the following
enforcement values:

1. Prohibition enforcement value, denoted by �.
Given a transition label of the form t � [G ], it
signi�es that the transition t is forbidden to exe-
cute as long as G holds.

2. Mandatory enforcement value, denoted by �.
Given a transition label of the form t [l ; u) � [G ],
it signi�es that the transition t is forced to execute
within [l ; u) whenever G holds.

Two equivelent constructs to the above may be found
in [16].

3.5 Resource Dependencies

Safecharts distinguish components as resources and
consumers. A resource is represented as parallel or
state with a substate status keeping track of the re-
source availability. Substates free and busy of sta-
tus denote respectively that the resource concerned
is available or in use. A consumer acquires free re-
source by altering status to busy and relinquishes it
by changing iti back to free. The interaction between
the consumer and the resources is achieved by using
a state-reference mechanism. For example, the con-
sumer(1).resource(a).ins[2].status is a direct ref-
erence to the status states of resource instance 2 of
type (a) required by the consumer(1). As shown
in Figure 6, the general representation of a consumer-
resource dependency consists of two main parts: an
array of consumers residing in and-state and a pool of
di�erent resources required by the consumers.

In order to avoid any potential resource contention,
the consumer does not hold a resource, unless all other
resources required by it are also available. This ap-
proach makes sure that any potential deadlock situa-
tion is prevented since the \Hold and Wait" condition,
one of the four necessary conditions for deadlock (see
[14] for more details), will not be applicable. Note that
it is su�cient for the consumer to know whether or not
the required resource is available and unnecessary to
know about the consumer, if any, holding it. If there
is a con
ict between consumers requesting the same
available resource at the same time, then one of the pri-
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ority scheduling algorithms, such as First-Come-First-
Served, can be used to select one of the consumers.

3.6 On the Semantics of Safecharts

With respect to some features, Safecharts conform with
certain Statecharts variants such as RSML. For exam-
ple, they allow instantaneous states, parallel execution
of transitions and discrete events. Like RSML and
other Statecharts variants [12], Safecharts however do
not support negated trigger events, but, they have their
own semantics with respect to the priority of transition
execution.

When modelling safety critical systems, it is impor-
tant to eliminate any non-deterministic behaviour pat-
terns of the system. However, most Statecharts vari-
ants allow the construction of non-deterministic Stat-
echarts. Non-determinism arises if the trigger expres-
sions of two transitions starting from a common state
are simultaneously ful�lled. Because of its concern
with safety critical systems, Safecharts remove non-
determinism in all cases except when there is no safety
implication.

It was stated in [1] that the introduction of execution
priorities eliminates non-determinism to some extent.
In the example given in Figure 7(a), according to the
semantics of [6], if the state a is active and the event
e occurs then it is not determined whether the tran-
sition a; b or the transition d;c is to be executed.
However, according to the semantics given in [13] the
transition d;c is the one that should take place since
its scope1 e is on a higher level than the scope d of
a;b .

Nevertheless, the previously mentioned priority con-
cept fails to remove the non-determinism in Statecharts
shown in Figure 7(b) since d;c and a;b have the

1The scope of a transition is the lowest or-state which is an

ancestor state of both its source and target states.

same scope, that is the state e. Another priority con-
cept [3] designed to overcome this kind of situations
uses the state hierarchy in order to de�ne priorities be-
tween transitions. According to this concept, higher
the source state of a transition in the hierarchy, higher
is its priority. Therefore, in Figure 7(b), it is the tran-
sition d;c which is to be executed if the state a is
active and the event e occurs. Even with this priority
concept in place, however, all existing Statecharts vari-
ants are non-deterministic in the situation illustrated
in Figure 7(c).

The ordering of states according to their risk in
Safecharts enables not only the determination of safety
default states, but also a more sensible approach to as-
signing priorities to transition execution. Safecharts
have di�erent semantics of assigning priorities to com-
peting transitions. Transitions are given priorities ac-
cording to the risk level of their target states, rather
than their scope as in [13], or the hierarchy of their
source states as in [3]. For example, since the state c
in Figure 7(a) is of lower risk level than state b, d;c
is considered to be a safer transition than a;b and,
therefore, is assigned a higher priority. Therefore, in
general, lower the risk level of the target state of a
transition, higher the priority of any transition leading
to it. Consequently, transition a;b in Figure 7(c) is
the one to be executed if state a is active and the event
e occurs. Nevertheless, this semantics can still be non-
deterministic, as shown by the example in Figure 7(d).
This is because both target states b and c are of the
same risk level.

The semantics of Safecharts can be re�ned further in
order to overcome the above situation. This is achieved
by considering future transitions, that is, all possible
transitions whose source states are those entered by
executing all currently competing transitions. This
approach is based on future transitions whose source
states are of the same risk level but their target states
are of di�erent risk levels. For example, in Figure 8(a),
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the transition b;e and the transition c;f are future
transitions whose source states, b and c, are of the
same risk level but their target states, e and f, are of
di�erent risk level. Since e � f, the transition b;e
is safer than the transition c;f. Therefore, from the
point of view of safety, selecting the transition a;b
is more appropriate than selecting a;c since it will
lead to the state b which is a source state of a safer
future transition b;e. An enhancement to the above
semantics can be achieved by investigating, if neces-
sary, several steps in order to obtain the safest possible
transition among the competing transitions. However,
non-determinism can still be encountered if the target
states of competing transitions, such as those in Fig-
ure 7(d), or the target states of all future transitions,
such those in Figure 8(b), are found to be of the same
risk level, even if they happen to be at a risk level
di�erent from that of the source state of the initial
transitions. For example, in Figure 7(d), both c and
b are target states of the same risk level and have no
future transitions and, therefore, the system will non-
deterministically select either a;b or a;c. In this
situation, we are dealing with a series of neutral transi-
tions within the scope of a set of given states, choosing
any of them will have no repercussion on safety. For
this reason, this kind of situation is referred to here as
a safe non-determinism of the system.

However, it is worth mentioning that the concept
of safe non-determinism includes only the situations

where the target states of future transitions are compa-
rable in terms of risk. An example of non-comparable
target states (e and f) of transitions is shown in Fig-
ure 8(c). Although both transitions b;e and c;f are
safe transitions, the safety of non-detreminism between
the transitions a;b and a;c is not straightforward.
This is because it is impossible to determine the safest
course of action due to lack of knoweldge about rela-
tive safety between f and e. In other words, although
both transitions a;b and a;c will eventually lead
to a safer state than the state a, available knoweldge
is insu�cient to guide the transition execution in the
safest possible manner.

We also make an important exception to the rules
on priority assignment discussed above. This concerns
the generic event ", introduced in Section 3.1 as a
way of modelling component failures. Since failures
are inherently non-deterministic and unpredictable, we
therefore adopt a principle of preservation of non-
determinism with respect to " events. According to this
principle, " events are always exempt from the priority
assignment process.

4 Railway Signalling

This section illustrates Safecharts using railway sig-
nalling as a case study. Railway signalling facilitates
correct movement of trains, delivering the services in
a required manner (function) and not endangering life



or property (safety). It consists of two components,
namely, permanent way (physical equipment: tracks,
points and signals) and interlocking (safety mecha-
nism that prevents certain undesirable combination of
events). Relays on the permanent way detect trains
on tracks and sensors monitor the function of signals
and points. Both actuators and sensors, as well as
the controller itself, can fail at any time, thus, placing
users and operators of the railway at risk. For brevity,
this paper illustrates Safecharts representations only
for signals and routes. However, in the de�nition of
routes (in Section 4.2) we assume the availability of a
similar representation for points and tracks.

4.1 Signals

Signals are the standard means for giving instructions
to drivers on train movement. Unlike in [11] and
[18], signals in our model show only two basic aspects
(colours), namely red and green, to represent proceed-
ing and nonproceeding aspects respectively. In order
to represent signals in Safecharts, we assume an array
of the type: Signal i : [1..n], n being the number of
signals in the system. The lamp of a signal can be
either operational, indicated by l in, or out of order
indicated by l out.

The signal changes its aspect from green to red
and, vice versa, when it receives a request from the
system. Since signals are considered as resources, as
shown in Figure 9, each signal has a state named sta-
tus. The sensors of the signal, providing the system
with information regarding the signal, are also repre-
sented. Sensors can either be operational, indicated by
s in, that is, the system is receiving correct informa-
tion from the sensor about the signal, or faulty, indi-
cated by s out, meaning the opposite.

If for any reason, the lamp of the signal, or its sen-
sors, fails then the system considers the signal to be
faulty, changing it from operational mode to faulty
mode. The failure of either of the physical components
of the signal is represented by an " event, while its re-
pair is indicated by � event, which returns the signal
into its operational mode. The actions, which the sys-
tem may take in response, include withdrawal of the
faulty signal from the service and prevention of trains
from approaching it.

As part of the safety requirements of the system,
in order for the lamp to change its aspect from red to
green, the signal ahead must be alight. When the signal
returns to its functioning mode, following the repair of
its faulty lamp or the sensor, or when it is not required
any more by the system, the lamp must show the red
aspect. The pointing arrows in Figure 9(b) indicates
the safe default states of the signal.

4.2 Routes

A route is de�ned as a path between two signals in
the same direction. Routes are considered as consumer
components of the railway signalling system since they
consume resource components such as signals, points,
and tracks. Each route has a unique identity number.
In order to represent routes in Safecharts, we assume
the array: Route j : [1::m], m being the maximum
number of possible routes relevant to the junction (sys-
tem) under consideration.

If the operator issues a route request over a speci�c
section of the railway then the route request is evalu-
ated by examining the status of the resources required
by it, namely, the signals, the points and the tracks in-
volved in the route. In the functional representation of
the route, see Figure 10(a), a route request is granted
if all resources are available, that is, they are not allo-
cated to another route in the system. If the route was
set then all involved resources are consequently set to
busy. If a second route requests a resource held by the
�rst then it has to wait for the �rst route to release the
resource.

In the safety representation of the route as shown
Figure 10(b), it is a safety requirement that for a route
to be set, all required resources must be in their opera-
tional mode. If any of the resources involved fails after
the route has been set then the route is unset and all
resources involved in that route are released.

signal[i]

signal[j]

signal[i+1]

route[k+1]

route[k]

Figure 11: Two routes and a faulty signal.

In order to illustrate how Safecharts work, let us
consider two scenarios:
Scenario 1:

When signal [i + 1] happens to be in a faulty state,
that is, in the sig-faulty state, the system requests
signal [i ] to show a proceeding aspect to serve a route
request for a train approaching it. The system request
is represented by the event e3, shown in Figure 9(a).
However, in the safety layer of signal [i ], Figure 9(b),
the transition red;green is constrained by a prohi-
bition enforcement G in the event of signal [i +1] being
in sig-faulty. Since, in this case, G is true by as-
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Figure 9: Safecharts representation of a signal.

sumption, then the transition red;green will not be
allowed to take place in signal [i ].
Scenario 2:

Consider two routes: route[k ] and route[k+1] shar-
ing, as shown in Figure 11, a common resource
signal [i + 1], and that route[k ] has already been set.
Suppose for some reason, the sensor at signal [i ] fails
while the signal [i ] serving route[k ]. This failure is rep-
resented by the generic event "s shown in Figure 9(b),
which triggers the transition s in;s out. In this
case, event e1 is generated and causing the transition
sig-opr;sig-faulty to take place; see Figure 9(a).
If, at the time when "s occurs, the lamp of signal [i ]
is working and showing a proceeding aspect then it
must also change its aspect to red. This is realized
by the generation of the event e4, and the resulting
red aspect ensures that no train passes the given sig-
nal. At the same time, since signal [i ] enters the sig-
faulty state, the route[k ] is unset and forced to re-
lease all its resources. Realisation of the mandatory
enforcement G attached to the transition set;not-
set, in Figure 10(b), forces the transition to take place
within a prescribed time limit. Following this, the
route[k + 1] can be set, if necessary, regardless of the
faulty signal [i ], provided that all resources required by
it are available.

5 Conclusion

This paper has introduced Safecharts as a novel variant
of Statecharts for use in safety critical system speci�-
cation and design. The strength of Safecharts lies in its
systematic approach to design, allowing the designer to

�rst focus on the safety issues without being distracted
by its functional requirements and then to consider the
interactions between both kinds of requirement. This
is achieved by adopting a more appropriate represen-
tation for functional and safety requirements.

Safecharts has a well-de�ned semantics expressed in
terms of risk ordering relation of the system states and
a new meaning of default states. Transitions between
states were classi�ed according to the nature of their
risk and were given new priority scheme for their exe-
cution in the event of any non-determinism. Any non-
determinism is resolved in favour of safer transitions
that lead the system to a relatively safer state. The
term safe non-determinism was introduced to express
situations where any non-determinism has no repercus-
sion on safety. Transitions were annotated with prohi-
bition and mandatory enforcement as a means of en-
suring the safe behaviour of the system. Together these
features enhance Statecharts in creating a specialized
framework for systematic design of safety critical sys-
tems. The approach has been illustrated using railway
signalling as a case study.

In order to lessen the e�ect of exclusion of transi-
tions between all non-comparable states, the current
research is considering the concept of broad bands of
risk so that transitions between non-comparable states
belonging to di�erent bands can still be permitted but
without a�ecting the overall safety of the system. Risk
bands are numerically ordered from 1 to some n, higher
indices implying higher risk. A risk band m contains
only comparable states which are related to each other
by � or non-comparable states whose immediate suc-
ceding states are in risk band (m + 1).
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Figure 10: Safecharts representation of a route.
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