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Abstract. Safecharts is a variant of Statecharts intended exclusively
for safety critical systems design. Its specific features include an explicit
representation of risks posed by different hazardous states, a separation
of functional and safety concerns, a representation of component failures
and characterisation of transitions based on the nature of their risk. This
paper presents a rigorous mathematical framework for enabling greater
clarity and accuracy in Safecharts. It contains a study of the represen-
tation chosen for risks and associated concepts such as risk graphs and
safety oriented classification of transitions. The step semantics is also
defined in relation to Safecharts. As lower level abstractions of states are
brought into focus, a way of constructing risk graphs for and states is
suggested. As a case study, the use of Safecharts in the domain of security
is illustrated, in particular in modelling the Role-Based Access Control.
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1 Introduction

Statecharts, introduced by Harel [6] and extensively studied by others, is widely
used for modelling reactive systems. Safecharts [2] is a variant of Statecharts
developed originally for exclusive use in the safety critical domain, namely, in
relation to systems design. The objectives of this paper are two–fold. On the
one hand, the paper aims at providing a mathematical exposition of Safecharts
that matches the level of rigour and clarity sought in critical domains such as
safety. On the other hand, it attempts to place Safecharts on a new, more gen-
eral, footing so that it can serve system design with respect to safety, as well
as other critical system attributes such as security broadly in a similar manner.
This generality is an important goal in itself. It allows the transfer of method-
ological experience, as well as the associated human expertise, from one domain
to another easily, thus mutually enriching the practices of domains concerned in
the long run. Despite this generalisation being sought, this paper continues to
use, generally, a single ‘safety attribute’ to mean whatever the critical system at-
tribute under study, whether it is safety, security, or any other system attribute,
unless where a reference to a specific system attribute is required.

The basic ideas of Safecharts have been discussed in [2, 12], with illustrations
of concepts and usage using case studies. Safecharts aspires to the same goals
as Statecharts: visual appeal, ease of abstraction, modular and hierarchical rep-
resentation of systems, mathematical rigour, etc. In addition, Safecharts aspires
to fulfil the needs specific to safety critical systems design; these include repre-
sentation of risks posed by system states and equipment failures, provision of
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additional safeguards against them, a systematic, rigorous and disciplined ap-
proach to design, and so on. These attributes are central to the design philosophy
adopted in Safecharts.

For achieving a systematic, rigorous and disciplined approach, Safecharts
adopts a twin–track strategy. On the one hand, Safecharts uses as its foundation
Statecharts – a formalism with an appealing mathematical basis. On the other
hand, it separates the aspects of the safety from those of the function, in order to
allow the designers to focus on critical and functional features independently and
in a systematic manner, and the reviewers to concentrate on safety without being
distracted by functional issues. The separation of function and safety is achieved
by having two ‘layers’ in Safecharts representations. The purpose is, on the one
hand, to disambiguate between requirements and features devoted to safety and
function and, on the other, to highlight the interdependencies between the two.
The functional layer is devoted to functional issues and utilises Statecharts as
used conventionally. The safety layer is devoted exclusively to safety issues and
deals with issues such as equipment failures, risks posed by hazardous states,
representation of safety features and mechanisms and reduction of unpredictable
patterns of behaviour due to any non-determinism in a safe manner. In the case
of security, safety layer deals with security risks posed by system states and with
security mechanisms.

A key feature in realising the above is an ordering of system states according
to risks posed by them relative to one another. Mathematically, this corresponds
to a risk ordering relation on states. As a matter or prudence, Safecharts does
not permit transitions between states of unknown risk levels. Recognising the
possibility of such a situation arising from omissions, inaccuracies and incon-
sistencies in the risk ordering relation, for example, due to human error or the
lack of knowledge, Safecharts imposes an additional clustering of states into risk

bands and constructs a risk graph of these states. In doing so, any state with
a possible inadequate consideration of risk is placed conservatively in a higher
risk band by default, alerting the designer to reconsider its risk nature if such
an interpretation is undesirable. A classification of transitions into safe, unsafe

and neutral transitions based on the risk graph provides a sound basis for calling
for additional safeguards against unsafe transitions and prompt enforcement of
safe transitions. It also provides a safety-oriented resolution of non-determinism
between any conflicting transitions favouring transitions that are more likely to
bring the system down to a safer level. Representation of equipment failures and
subsequent repair fits in neatly with the proposed framework and allows the in-
corporation of fail–soft features in functioning equipment in response to failures
elsewhere and fail–safe mechanisms in extreme cases.

Correct interpretation of Safecharts requires a sound understanding of several
important aspects of its semantics. This paper extends previous work [2, 12] on
Safecharts, firstly, by formulating a mathematical framework for dealing with the
above issues and, secondly, enriching it with a unique step semantics appropriate
to the needs of Safecharts and a set of more refined rules for resolving non-
determinism between conflicting transitions. As a new contribution, the papers
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makes an advance to the security domain by demonstrating the applicability of
Safecharts to modelling of Role Based Access Control [14].

The paper has the following structure. Section 2 introduces basic concepts of
Statecharts and the notation used here in relation to Statecharts. Section 3 pre-
pares the ground for the subsequent discussion, introducing the key concepts of
Safecharts related only to risks posed by hazardous states. Section 4 presents an
integral mathematical view of Safecharts, including its step semantics. Section 5
presents a case study drawn from the domain of security both to illustrate the
general use of Safecharts and to point out how it can be used in the security
context, while Section 6 concludes the paper.

2 Statecharts

Primary purpose of this section is to place Statecharts in the setting of the
mathematical framework used later for defining Safecharts. It is not intended as a
formalisation of Statecharts, for which there are widely known other sources. Our
formalisation, however, introduces certain restrictions to Statecharts, without
greatly inhibiting its generality and yet serving the clarity or simplifications
sought in Safecharts. Below is a brief informal introduction to Statecharts.

2.1 Statecharts in Brief

Statecharts is a visual specification formalism introduced by David Harel [6] for
modelling the behaviour of complex reactive systems. Statecharts is an extension
of finite-state machines with enhanced capabilities such as hierarchical decom-
position of systems states, explicit representation of concurrency and broadcast
communication. Statecharts is a kind of directed graph, with nodes denoting
states and arrows denoting labelled transitions. Labels of transitions take the
form e[c]/a, e being the triggering event of the transition, c a guarding condi-
tion and a an action generated precisely if and when the transition takes place.
For a transition to take place, its source state must be an active state. Once
generated, the action a is broadcasted to the whole Statechart, triggering, if ap-
plicable, other transitions in the diagram. In Statecharts, there are three types of
states: and, or and basic states. Similar to states in state–transition diagrams,
basic states are non–decomposable. Both and and or states consist of a number
of substates. Being in an or state means being in exactly one of its substates
while being in an and state means being in all of its substates simultaneously.
The substates of an and state are indicated by a dashed line and are known as
orthogonal states.

For example, in Figure 1(a), state S is an and state with two (orthogonal)
substates a and b, each being of type or. Being in S means being in a and
b simultaneously. States d, e, f, g, j and k are basic states that cannot be
decomposed into further substates. The default state, pointed by a dangling
arrow, is a substate of an or state to be entered if a transition arriving at the
or state does not have an explicit entry state. In Figure 1(a), states c and g

are the default states of a and b respectively. At initialisation, state S is in its
default configuration, namely {j, g}. If the event e occurs, the transition j;k
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takes place. As a consequence, the state j is exited, the state k is entered and the
event a is generated and broadcasted throughout the Statecharts. Consequently,
the action a triggers transition g;f, and hence moving to state f inside state
b. As a result, a new configuration of state S is realised, namely {k, f}.

2.2 The Basic Structure of States in Statecharts

As with any state–based formalism, fundamental to any definition of semantics
of Statecharts are the notions of state and transition. This approach allows a
compositional view of the structure of states at any given level of abstraction,
ignoring the internal details of their substates at lower levels of abstraction.

Given an application, let S denote the set of all relevant states as understood
in Statecharts, T the set of all possible transitions, E the set of all events, Θ
the set of possible types of states in Statecharts, that is, Θ = {or,and,basic},
SN a set of names used for labelling states, and Φ the set of (logical) formulae
consisting of variables, logical operators and relational operators. When it stands
in for an element of a set, let λ be a null value, standing in for an unspecified
component, or a component irrelevant to a given specification, belonging to that
set. Let S be an arbitrary state in S. It has the general form:

S = (id , θ,C , d ,A, α,T , ℓ,E ) (1)

where

id – id ∈ SN is a name uniquely identifying S .
θ – the type of the state S ; θ ∈ Θ.
C – a finite set of direct substates of S , referred to as child states of S .
d – d ∈ C and is referred to as the default state of S . It applies only to or states.
A – a finite set of currently active child states.
α – a status flag indicating whether or not S is active; α ∈ {active, inactive}.
T – a finite subset of S × S, referred to as explicitly specified transitions of S .
ℓ – a function T → E × Φ × F E , labelling each and every specified transition

in T with a triple, F E denoting the set of all finite subsets of E .
E – the finite set of events relevant to the specified transitions of S ; E ⊆ E

When dealing with several states simultaneously, various components of a given
state Si are referred to using the form Si .C ,Si .T , etc. When it makes no confu-
sion, we will denote these components simply as θ, C , etc. Intuitively, an active
basic state S has the structure

S = (id ,basic, ∅, λ, ∅, active,T , ℓ,E ) (2)

Components in (1) have various interdependencies; their formal definitions and
interrelationships are beyond the scope of this paper but are given in [3]. Due
to the existence of many different variants of Statecharts (see [15] for a review)
transitions have been introduced and interpreted differently. Hence, it is impor-
tant here to clarify what are valid transitions of Statecharts as understood in
Safecharts. Given a transition t ∈ T, its label is denoted by ℓ(t) = (e, c, a), writ-
ten conventionally as e[a]/a. e, c and a in the latter, denoted also as trg(t) = e,
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con(t) = c, and gen(t) = a, represent respectively the triggering event, the
guarding condition and the set of generated actions. Note that since the elements
of the label are optional, these functions may return λ to signify the absence of
a particular element of the label. The source state of a transition t is denoted by
sc(t) while its target state is denoted by tg(t). When it is more appropriate, a
transition will be represented by a pair containing its source and target states,
and is indicated as an arrow in the form sc(t) ; tg(t). For a transition t ∈ T to
be a valid transition, the following conditions must be satisfied: (i) t has only
one unique source state and one unique target state. In other words, unlike many
statecharts variants, e.g. [7, 9], t cannot have multiple source states or multiple
target states, (ii) t does not span between substates of an and states which is a
common ancestor state of its source and target states, and (iii) the source state
and the target state of t must not be ancestrally related. For example, according
to the above conditions, all transitions in Figure 1(b) are invalid transitions in
Safecharts.
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Fig. 1. An Example of Statecharts and invalid transitions.

3 Risk Frame

Turning to the subject matter of this paper, that is, the safety critical systems
design, Safecharts treats the hazardous states and the risks posed by them as a
fundamentally important issue. In this respect, this section lays the foundation
for our subsequent discussion by examining separately several key concepts re-
lated to risks posed by states. In the context of a state S , risk frame is a 5-tuple
and can be defined as:

F = (⊑,n,B, β,⊑β) (3)

The key element in F is ⊑, which is a risk ordering relation defined on S × S.
Strictly speaking, S refers here not to the states in Statecharts but to those
in Safecharts. The relation ⊑ expresses risks posed by states in comparison to
one another. Other components of the risk frame are actually derived from,
or supplement, ⊑ and form the subject of this section. Risk ordering being an
outcome of risk assessment, a process conducted by domain experts potentially
carrying a degree of human error or misjudgement, the relation ⊑ is prone to
gaps, inaccuracies and inconsistencies. Risk band is a concept introduced for the
purpose of tackling this drawback by placing states conservatively into distinct
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bands, or clusters, with some numerical indexing for comparative purposes. n in
(3) represents the total number of risk bands of a given state. B and β are two
related functions, the former from N to P S and the latter from S to N. Given
a risk band i and a state s, B(i) gives the set of states in the ith risk band,
while β(s) gives the risk band index of the state s . ⊑β in (3) is a binary relation
on N

k
1
, with N1 = N − { 0} and k = #S .C . It is a subsidiary relation for risk

ordering in and states only and is defined using risk band indices of their child
states.

3.1 Risk Ordering Relation

Given a state S , its risk ordering relation is denoted by ⊑S , or simply by ⊑ where
it causes no confusion. Given that S is an or state and the states s1, s2 ∈ S .C ,
the risk ordering relation of S is defined such that s1 ⊑ s2 is true if and only if
the risk level of s1 is known to be less than, or equal to, the risk level of s2. The
relation ⊑ may consist of pairs of states which are known to be either of two
distinct risk levels or of an identical risk level. This can be represented mathe-
matically by decomposing ⊑ into two relations: a partial order relation and an
equivalence relation, denoted by 4 and ≈ respectively. The interpretation of this
notation is such that, given two distinct states s1 and s2,
s1 4 s2 – the risk level of s1 is known to be strictly lower than that of s2.
s1 ≈ s2 – the risk levels of s1 and s2 are known to be identical.
The relation ⊑ is reflexive and transitive. However, ⊑ may not necessarily be
symmetric or antisymmetric. This is because there can be symmetrical pairs in
⊑, denoting states which are at the same risk level.

However, in the case of S being an and state, it is impossible to define the
risk ordering relation ⊑ on its parallel child states in C . Alternatively, the risk
ordering relation ⊑ is defined on the set C ′ containing the child states of the
equivalent flattened or state of S , namely S ′, as mentioned in Section (3.2). The
risk ordering relation can be represented as a graph; see Figure 2(a). In order
to reduce the clutter in its visual presentations, arcs in graphs ⊑ and 4 are
assumed to run implicitly upwards and loops at nodes corresponding to reflexive
terms are not shown.

3.2 The Risk Graph of or and and States

The risk graph of an or-state S , denoted by G(S ) is constructed on the basis
of the risk ordering relation ⊑S . However, in G(S ), each state is placed in a
unique risk band. As an example, Figure 2(b) shows the risk graph of a set of
states defined by the relation ⊑ depicted in Figure 2(a). The concept of risk
band and its formal definition is given in [3, 12]. Two states s and s ′ are said to
be risk–comparable if and only if they are comparable by ≈ (i.e. s ≈ s ′) or they
lie in different risk bands. Otherwise, they are said to be risk–noncomparable.
Note that risk–comparable states in the risk graph may be noncomparable by
the relation ⊑.
In general, risk ordering of an and state can be quite complicated and may not
be a viable option in practice when dealing potentially with a large number of
orthogonal child states. This is because risk ordering in an individual orthogonal
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Fig. 2. (a) Risk ordering relation (b) Risk graph (c) Risk distances of transitions.

child or state would no longer make sense unless due attention is paid to risk
ordering in the adjoining child or states. However, this difficulty can be over-
come by flattening the and state, that is, by converting the and state into its
equivalent or state. In doing so, the risk ordering relation can be applied to the
resulting or state and, hence, the risk graph can be constructed in the usual
manner.

An and state S , with a set of direct substates C , can be flattened into an
equivalent or state S ′ whose C ′ consists of tuples drawn from the unordered
Cartesian product of all orthogonal states in C . Each such tuple consists of a
number of parallel states, equal to the number of orthogonal states in C and
corresponds to a conventional state. The transitions associated with the equiv-
alent or state can be derived using the canonical mapping approach of [5]. For
example, Figure 3(a) shows an and state with two orthogonal substates m and
n, while Figure 3(b) shows the equivalent or state as well as its interpreted
transitions.

When flattening an and state, the number of interpreted transitions rises
rapidly, especially if the and state consists of many orthogonal states. This is
a well–known problem of state–transitions diagrams – a problem that led to
the very invention of Statecharts in the first place. Statecharts achieved this
through the notions of depth and abstraction. In this context, flattening and

state amounts to the reverse process but is necessitated by the need to consider
the risks posed by possible combinations of states – a requirement peculiar to
critical systems.

Depending on the performance of the domain expert, the risk graph of an
and state can be specified either: (i) directly, or (ii) indirectly. In (i), the risk
ordering relation ⊑ can be applied to the or state obtained by flattening the
and state. Hence, the risk graph can be constructed in the usual manner. In
(ii), risk ordering can be done using an irreflexive subsidiary risk ordering rela-
tion ⊑β defined in terms of the risk band indices of individual orthogonal risk
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graphs. Thus, (ii) does not require flattening the and state for the purpose of
specification of ⊑. A formal definition of the direct and indirect approaches is
given in [3].
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3.3 Node Replacement in the Risk Graph

The hierarchical structure of states in Statecharts, achieved by the and and or

composition, is also reflected in risk graphs. Analogous to a state in Statecharts
being composed of a number of other child states, a node in a risk graph may
in turn consist of a risk graph corresponding to the structure of the state rep-
resented by that node. When dealing with the system under consideration at a
lower level of abstraction, there may be a need to expand the risk graph to the
same level of abstraction. In this case, it is necessary to replace the node con-
cerned with the risk graph it represents. This section outlines how to perform
such node replacement. Given that x is a non basic state and x ∈ S .C , the
node corresponding to x in G(S ) can be replaced by its risk graph G(x ) in the
following manner. Let G′(S ) denote the revised risk graph of S after the node
replacement. Nodes in the highest risk band of a risk graph are referred to as its
‘highest nodes’ while its ‘lowest nodes’ are those nodes in the lowest risk band:

(a) The node x , as well as arcs incident on it, are removed from G(S ).
(b) The highest node(s) in G(x ) are connected to immediate successor nodes of

x in G(S ), if any.
(c) The lowest node(s) in G(x ) are connected to immediate predecessor nodes

of x in G(S ), if any.
(d) If there exists a node representing a state x ′ in G(S ) such that x ′ ≈ x

(i) if x ′ is a basic state then the lowest node(s) of G(x ) are connected to x ′

by the ≈ relation,
(ii) if x ′ is a non-basic state then the lowest node(s) of G(x ) are connected

to the lowest node(s) of x ′, by the ≈ relation.

(e) In the event of x having no direct successor in G(S ) but there being a node
x ′ in G(S ) such that βS (x ′) = βS (x )+1 in G(S ), highest node(s) of G(x ) are
to be placed in G′(S ) at least one risk band lower than that of x ′ in G′(S ).

(f) In the event of x having no direct predecessor in G(S ) but there being a node
x ′ in G(S ) such that βS (x ′) = βS (x )− 1 in G(S ), lowest node(s) of G(x ) are
to be placed in G′(S ) at least one risk band higher than that of x ′ in G′(S ).
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The risk graph G(x ) intended to replace the node x is obtained depending on
the nature of the node x such that: (i) if x denotes an and or an or state then
G(x ) is obtained as described in Section (3.2), or (ii) if x denotes a tuple then
G(x ) is obtained analogous to the risk graph of an and state. This is achieved
by considering x as being an and state and the elements of the tuple as being
its orthogonal states. However, in contrast to our definition of and states, in
this case, the set x .C (the elements in the tuple) might contain one, or more
basic state(s). In this case, the risk graph G(x ), is constructed as follows: (a)
all basic states in the tuple x are to be excluded and a risk graph G(x ′) of the
remaining non-basic states is to be conventionally constructed, and (b) every
excluded basic states is to be attached to every node in G(x ′). In the case where
all the elements in x are basic states then no node replacement takes place.

In the interest of maintaining an identical level of abstraction, it makes sense
to perform any node replacement on all non-basic nodes at a given level of the
state hierarchy simultaneously. This is in line with maintaining the degree of
the depth and abstraction obtained by the Safecharts diagram. As an example,
Figure 4(a) shows the risk graph of S with node d to be replaced by its risk
graph, that is by G(d). The revised risk graph of S , that is G′(S ), obtained after
the node replacement is shown in Figure 4(b).

4 Safecharts

Safecharts was introduced in [2] as a safety-oriented variant of Statecharts de-
veloped especially for the specification and design of safety-critical systems. One
of its unique features is the maintenance of two separate layers of representa-
tion: a functional layer and a safety layer. The aim of the former is to capture
system’s transformational behaviour purely from a functional point of view, by
using Statecharts in the conventional sense, while that of the latter is to capture
the risk involved in such behaviour. The safety layer contains a risk graph of
the states of the system under description and a safety annotation associated



10

with transitions between these states. The concept of risk graph is based on our
discussion in Section 3.

4.1 States in Safecharts

In dealing with failures in safety–critical systems, each component is represented
in the form of an or state with two distinguished substates, denoted generically
by in and out, meaning respectively that the component is functioning correctly
or has failed. The nature of these two states are such that in is strictly safer than
out (in 4 out). Associated with these states are also two generic events: a non-
deterministic event ε signifying a failure, and an event µ signifying a maintenance
or repair action which returns the component back to service. A component may
have more than one failure mode, in which case out may itself be an or state
with a distinct substate for each of the failure modes, possibly with further
transitions to model failure propagation.

Let us refer to the notation introduced in Section 2.2 in relation to Statecharts
using the subscript stc, and to the notation introduced here in relation to
Safecharts using the subscript sfc. First let us define a predicate sys on Sstc

such that sys(S ) is true of S exactly if it models the state of a system, or the
state of an item of equipment. For each such state in Sstc , let there be a corre-
sponding state Ssfc with three further states sysS , inS and outS . Informally,
sysS denotes the state of an extended failure-prone version of S . The Ssfc , and
likewise the Esfc , can be extended as follows:

Ssfc = Sstc ∪ {sysS , inS ,outS | S ∈ Sstc ∧ sys(S )} (4)

Esfc = Estc ∪ {ǫS , µS | S ∈ Sstc ∧ sys(S )} (5)

where inS ,outs , ǫS and µS are as introduced above. Where it causes no con-
fusion, the subscripts in these new elements will be dropped. The states in
Safecharts have an extended structure and include, in addition to what was dis-
cussed in section 2.2, the components of the risk frame as well as the associated
relations ⊑ and ≈ . The extended structure has the form

S = (id ,or,C , d ,A, α,T , ℓs ,Es ,⊑,n,B, β, λ) (6)

S = (id ,and,C , λ,A, α,T , ℓs ,Es ,⊑ n,B, β,⊑β) (7)

S = (id ,basic, ∅, λ, ∅, α,T , ℓS ,ES , λ, λ, λ, λ, λ) (8)

where Es ∈ Esfc and every component is defined using the sets (4) and (5) with
extended versions defined above. When dealing with the two special states in

and out, let us separate the functional and safety requirements concerning the
state S as follows:

in = Sf ++Ss (9)

Sf = (id , θ,C , λ,A, α,Tf , ℓf , Estc , λ, λ, λ, λ) (10)

Ss = (id , θ, λ, d , λ, α,Ts , ℓs , Esfc , λ,⊑,n, β,⊑β) (11)

Sf and Ss being two partially completed templates of state specifications in
Safecharts. The operator ++ which ‘glues’ the two templates together, is in-
tended to have the following effect: θin = θSf

= θSs
, Cin = CSf

, din = dSs
,
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Ain = ASf
, Tin = TSf

∪ TSs
, Ein = Ef ∪ Es and ℓin = {(t , ℓf (t) a ℓs(t)) |

t ∈ Tin}. The risk frame components in state in are identical to those in Ss .
If necessary, state out may also be defined as an or state for modelling failure
propagation from one mode to another. The extended failure–prone version sys

for a given state S ∈ Sstc is an or state that can be defined as follows:

sys = (id ,or, {in,out}, in,A, α, {(in,out), (out, in)},

ℓs , {ǫ, µ}, {(in ≺ out)}, 2, {(in, 1), (out, 2)}, λ}) (12)

Features sys (12), in (9) and Ss (11) represent the contents of the safety layer,
whereas Sf (10) represents the content of the functional layer. It is clear that Sf

in (10) is based purely on Statecharts as understood conventionally. Thus, its
non-null values are identical to the corresponding ones given in (1) for dealing
with functional requirements. The default state d in Ss (11) is defined such that
β(d) = 1 and is referred to as the safe default state of in, which is itself being the
default state of sys (12). This forms a safe initialisation feature in Safecharts.

4.2 Transitions in Safecharts

A transition t ∈ T in Safecharts is a legal transition if and only if sc(t) and tg(t)
are risk-comparable states in a common risk graph. Based on the risk graph,
Safecharts classifies transitions according to the nature of risks they carry and,
accordingly, extends the specification (labelling) of transitions with additional
guards and enforcement conditions. Transitions belong to three categories: safe

(hi-to-lo risk), unsafe (lo-to-hi risk) and neutral (between states of the same
risk level). In terms of the function β, introduced informally in Section 3, this
classification can be made as: a transition t is considered safe if β(tg(t)) <
β(sc(t)), unsafe if β(tg(t)) > β(sc(t)), and neutral if β(tg(t)) = β(sc(t)). Thus,
ε introduced in Section 4.1 triggers an unsafe transition, while µ triggers a safe
transition.

Transition labelling in Safecharts has the general form e [c]/a [l , u)Ψ [G ], with
e, c and a remaining the same as in Section 2 and certain components being
mandatory depending on the risk classification of the transition concerned. [l , u)
is a right-open time interval from time l to time u. Ψ is a safety enforcement
pattern specified using two alternative symbols: Á and Â, and [G ] is a safety
clause. t Á [G ] is mandatory for unsafe transitions and means that the transition
t is forbidden to execute as long as G holds. t [l , u) Â [G ] is mandatory for safe
transitions and means that the transition t is forced to execute within [l , u) from
whenever G begins to hold irrespective of the occurrence of its triggering event.

The risk distance of a transition t ∈ TS is the number of band boundaries
between the source and target states of t in G(S ). Denoting it by D(t), it can be
defined as: D(t) = β(sc(t))−β(tg(t)), the positive and negative signs of D(t) thus
signifying respectively an increasing, or decreasing, risk; see Figure 2(c). The risk
nature of transitions plays an important role in determining their safety enabling

conditions. For a neutral transition to be enabled, it must be functionally enabled,
that is, its source state is active, its triggering event e has occurred and its
guarding condition c, if any, is true. However, for an unsafe transition to be
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enabled, it must be both functionally enabled and its safety clause G must be
false. Likewise, for a safe transition to be enabled, it must be either functionally
enabled or its safety clause G is true.

The enabling time of a transition t , denoted by EnTime(t), is defined as the
earliest time when t becomes safety enabled, as defined above. The time interval
[l , u) associated with safe transitions, introduced above, is a real-time constraint
on t and imposes the condition that t does not execute until at least l time
units have elapsed since it most recently became safety enabled, that is, since
EnTime(t), and must execute before u time units since EnTime(t). If l and
u have not been specified explicitly then t is assumed to be spontaneous with
an open-ended [0, 1) time interval. This implies that t executes as soon as it is
enabled by G , in other words, as soon as EnTime(t) is realised. In Safecharts,
a transition t is executed if and only if it is safety enabled within its associated
time interval and, either t is not in conflict with any other enabled transition or
t has the highest priority among its conflicting transitions.

In Safecharts, two transitions t1 and t2 are said to be in conflict if sc(t1) =
sc(t2) and they become functionally enabled simultaneously. In Safecharts, non-
deterministic choice between two, or more, conflicting transitions can be resolved
by giving higher priority to the transition with the shortest risk distance. This
approach is different from other approaches, for example in [13], where priori-
ties are given according to the scope1 of the conflicting transitions while in [4]
priorities are given according to the hierarchy of their source states.

Let conflict(t) be the set of all possible transitions which are in conflict
with transition t . In the case of transitions with equal risk distances, prioritisa-
tion is based on the cumulative risk distances of future transitions of conflicting
transitions. A transition t ′ is said to be a future transition of the transition
t if the source state of t ′ is the target state of t . The set of future transi-
tions of t can be defined as future(t) = {t ′ | sc(t ′) = tg(t)}. There is a
greater likelihood of a future transition t ′ being executed if its source state
becomes active as a result of the execution of a transition t among those in
conflict, and its triggering event was generated by the execution of t . We re-
fer to such transitions as expected future transitions and introduce the set:
expected(t) = {t ′ | t ′ ∈ future(t) ∧ trg(t ′) ∈ gen(t)}.

Any nondeterminism between two, or more, conflicting transitions can now be
resolved by giving highest priority to the competing transition with the smallest
cumulative risk distance. The way cumulative risk distances of competing tran-
sitions are calculated is as follows: ∀ x ∈ (conflict(t) ∪ {t})
(1) if expected(x ) 6= ∅ then select any transition y from the set {y | y ∈
expected(x ) ∧ ∀ y ′ ∈ expected(x ) ⇒ D(y) ≤ D(y ′)}
(2) if expected(x ) = ∅ ∧ future(x ) 6= ∅ then select any transition y from the set
{y | y ∈ future(x ) ∧ ∀ y ′ ∈ future(x ) ⇒ D(y) ≥ D(y ′)}
(3) In both above cases, resolve the non-determinism on the basis of D(x )+D(y),
otherwise on D(x ) alone.

1 The scope of a transition t is the lowest common or ancestor state containing both
sc(t) and tg(t).
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Nevertheless, non-determinism may still continue to persist even after con-
sidering the future transitions as shown above, for example, if all, or some, tran-
sitions in conflict(t) have equal accumulative risk distances. However, this kind
of non-determinism is considered a safe non-determinism since all outcomes are
identical in terms of the risks involved.

4.3 The Step Semantics of Safecharts

There exists many different semantics for Statecharts, centering mostly around
the concept of step. The step semantics has been a much debated issue, pri-
marily because of the anomalous and counter–intuitive behavioural patterns of
Statecharts resulting from some of the interpretations. These debates concern
the central issue as to whether the changes, such as the generated actions or
updating values of data items that occur in a given step, should take effect in
the current step or in the next step. The reader is referred to [15, 10, 11, 13] for
more details about the different step semantics and the problems associated with
their definitions.

In defining the step semantics of Safecharts, our aim here is to adopt the most
appropriate standpoint in relation to the sole concern of Safecharts, namely the
design of critical systems from whatever the perspective, whether it is from
safety, security or any other system attribute. The step semantics of Safecharts
retains certain characteristics of the conventional step semantics such as the syn-
chronous hypothesis, while at the same time maintaining an intuitive relationship
between external and internal events so that it corresponds to the operational
reality of reactive systems. It is based on the treatment of external and internal
events in an identical manner, but it also requires the introduction of the concept
of postponed transitions and two separate notions of time, namely a synchronous

time metric and a real time metric. The step semantics in Safecharts is based
on the synchronous time model of statemate [7]. The system evolves from one
step to the next after considering a set of input events at consecutive intervals
separated by a granularity of ∆ time units, referred to as ∆-interval. The syn-
chronous time model has the advantage of avoiding infinite loop of triggering
transitions enabled by infinitely generated internal events, and preventing the
occurrence of racing conditions.

The set of input events at the end of the current ∆-interval consists of the
external events sent by the environment during the current interval as well as
the internal events generated by the execution of the previous step. Input events
last only for the duration of a single ∆-interval. Once the step has been taken,
all input events are consumed and the set of input events becomes empty. In
its initial state (initial configuration), the system waits for the environment to
produce external events. At the end of the first ∆-interval, the input events
consist of only the external events sent by the environment and are sensed and
reacted to by executing the initial step. As a result of the initial step, the system
moves to a new configuration, provided that the step is a ‘status step’ (in the
sense discussed later), the generated internal events, if any, are added to the
set of input events of the next step, and the clock is incremented by ∆-interval.
The set of input events of the next step consists of the internal events, if any,
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generated by the initial step together with the external events, if any, received
by the environment during the following ∆-interval. In the example shown in
Figure 5, the set of input events of step1 consists of the internal event e1 as well
as the external events e2 and e3. At the end of the ∆-interval, step1 is executed
and all the input events are consumed. This process continues in each step.
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Fig. 5. The step semantics of Safecharts.

In the cases where there are no external events generated by the environment
during the ∆-interval prior to the step, the set of input events comprises only
the internal events generated in the previous step. In this case, the step is taken
by consuming all input events and triggering relevant transitions. Consequently,
internal events are possibly generated again for the next step, leading to a new
configuration. In the case where there are neither external nor internal events
from the previous step, that is, where the set of input events is empty, after
∆-interval the step is taken anyway without executing any transition and, con-
sequently, with no change in the configuration of the system. For the system
to move to a new configuration, the environment has to produce a new set of
external events during the subsequent ∆-intervals. In this connection, our step
semantics distinguishes two types of steps, namely status steps and neutral steps,
the former causing a material change in the configuration of the system while
the latter causing no change.

Analogous to several other definitions of step semantics, the step semantics
of Safecharts eliminates many undesirable features, for example, negated events
and instantaneous states. Safecharts also maintains a clear causality ordering
and global consistency. Similar to the semantics of Statecharts introduced by
[7] and adopted by many variants, the execution of a step in Safecharts takes
zero time unit, and thus transitions triggered by input events are taken instan-
taneously once the step is taken. However, as stated in [8], the synchronous
hypothesis does not reflect the intuitive operational reality of reactive systems,
where transformations between the states of the system usually take some real

time, during which the environment can send some external events. In order to
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reconcile the mismatch between the synchronous hypothesis and the reality of
transformational behaviour of real-time reactive systems, we propose two no-
tions of time metrics: a synchronous-time metric and a real-time metric. In the
synchronous-time metric, the duration of the step, denoted by σ, is always taken
to be zero (in other words, σ is too fine to be detected), while in the real-time
metric σ is either zero in the case of the step being neutral step, or a non-zero
constant in the case of the step being a status step.

With reference to the real-time metric, the assumption underlying the adop-
tion of the synchronous hypothesis is that, once a step is taken at the end of a
∆-interval, any external events sent by the environment during the σ time unit
are postponed until the elapse of σ interval. Due to their importance in modelling
the safety aspects of the system’s behaviour, it is a feature in Safecharts that
generic events, namely ε and µ, must be taken as soon as they occur. Thus, in
this context, generic events are treated differently from other input events, and
are considered as interrupt events. Once they occur and are added to the set of
input events, the step does not wait until the end-time of the current ∆-interval,
but rather executes immediately consuming all input events gathered so far. The
∆-interval during which generic events occur is called an irregular interval, and
denoted by ∆′. The step that follows ∆′ is called an interrupt step. For example,
in Figure 5, step5 and step7 are two episodic steps executed as a result of the
occurrence of events ε and µ respectively.

5 Case Study: Safecharts in the Security Domain

Alongside availability and reliability, safety and security are two closely related
properties of dependable systems. The design of dependable systems is often
required to satisfy several of these critical properties simultaneously. There is
a growing interest in the degree to which techniques from one domain could
complement, or conflict with, those from another. In this section, we investigate
the applicability of Safecharts and its various safety-oriented techniques and
mechanisms for dealing with security issues. More specifically, we examine the
use of the concept of risk graph, and the various safety enforcement applied to
transitions, in the field of security.

5.1 rbac and its Modelling in Safecharts

In computer security, access control is the concept of managing authorisations,
by which resources (objects) are accessed by individuals (subjects) with a specific
set of operations. Role Base Access Control (rbac) is a well-established approach
in computer security for controlling access by users to various resources; see [14].
It is increasingly relevant to modern commercial, business and other domains.
Our approach to modelling rbac, however, is applicable to systems where se-
curity requirements are predominantly dependent on the state of the system.
An exemplar of such systems is reactive systems which Statecharts and, hence,
Safecharts are intended for. rbac is based on the concept of role – a representa-
tion of job functions performed by individuals in an organisation [1]. Unlike in
traditional access control mechanisms, such as those used in operating systems,
rbac assigns access rights to the roles rather than to the individuals directly. In
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other words, the subjects are able to access objects only by virtue of their roles.
A subject can be associated with more than one role and a role can be assigned
to many subjects.

Permitted access rights of different roles to objects are maintained in an
Access Control List (acl) against which requests by subjects to perform various
operations or tasks (e.g a write operation) on an object are checked. If a role
authorising the access of the object concerned by the required operation is found,
then the access right associated with this role is granted, otherwise, denied. The
model of rbac permits the temporary delegation of access rights by one party to
another in order to perform one or more specific functions. Figure 6(a) depicts
such a scenario in the context of an engineering organisation, where a manager
A delegates some, or all, of his tasks (access rights) to a subordinate engineer
Q , enabling Q to perform A’s tasks on his behalf. This mechanism is vulnerable
to potential security risks as acl makes no distinction as to whether a subject
requesting a certain mode of access is doing so in the capacity of his own role,
for example, as originally assigned by the security officer, or in the capacity of a
role acquired through a delegation.

As presented in [14], rbac may be treated as a hierarchy of four models:
rbac0 (flat model), rbac1 (hierarchical model), rbac2 (constrained model)
and rbac3 (symmetric model). rbac0 is a model depicting simply various per-
missions allocated to various roles and, thereby, to different users. rbac1, on
the other hand, depicts a seniority relation on roles, whereby senior roles auto-
matically inherits the rights permitted to more junior roles to perform various
tasks, reflecting the lines of authority or responsibility in a given organisation.
Going further, rbac2 enforces separation of duties and rbac3 introduces the
capability to review assignment of permission with changing circumstances.

In this work, we consider only the models, rbac0 and rbac1. rbac involves
generally three types of entities: users U , roles R and permissions P . Assignment
of permissions (allocation of tasks) to roles is given by a function α ∈ R → P P

so that, for any r ∈ R, α(r) gives the set of permissions assigned to the role r .
Likewise, assignment of users to roles may be given by a function from U to P R,
though its detailed elaborartion is not required in this particular work. Since no
restrictions are imposed on these functions, their representations are all that is
required in rbac0. Turning to rbac1, in addition to its conventional features,
our model considers here the relative risks associated with situations when users
belonging to different roles performs different tasks. This is represented by risk
ordering relations ⊑ and 4 on R × P with the same meaning as that given in
Section 3.1. For example, the interpretation of 4 is such that for any r1, r2 ∈ R

and p1, p2 ∈ P , (r1, p1) 4 (r2, p2) is true if and only if the security risk level
associated with a user in role r1 performing the task p1 is known to be strictly
lower than that of with a user in role r2 performing a task p2, unless r1 and
r2, and p1 and p2, each denote the same entity. Let 6 denote the hierarchical
ordering on R such that, for any r1, r2 ∈ R, r1 6 r2 is true if and only if the role
r1 is of a lower, or an identical, hierarchy compared to the role r2. In our model,
r1 6 r2 if and only if
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α(r1) ⊆ α(r2) ∧ (∀ p ∈ P • p /∈ α(r1) ∧ p ∈ α(r2) ⇒ (r2, p) 4 (r1, p)) (13)

In other words, each role of any given higher hierarchy consists of some specific
tasks not permitted by the roles of the lower hierarchies on security grounds, for
example, based on criteria such as trustworthiness, required competence level
and so forth. The above thus expresses in our model a principle of permission

assignment to roles. This is a capability not found in the formal representation of
conventional rbac1 [14]. In fact, classification of role hierarchies has to be based
on some sort of risk assessment and, in this respect, the concept of risk graph
in Safecharts provides a formal basis for achieving this. In the remainder of this
section, we illustrate the use of Safecharts in modelling temporary delegation
of a higher rank role to a user of a lower rank role in rbac and the use of the
principle (13) in establishing assignment of permissions to roles and, hence, the
determination of enforcement conditions appearing in certain transition labels.
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Fig. 6. An example of delegation in rbac and the safety layer.

Figure 6(a) shows the example being considered – a scenario involving just two
users, a manager A in role M and an engineer Q in role E , accessing a partic-
ular object O , for example, a file or a database. The following operations are
permitted: read (read only), write (both read and write), priv writing (privilege
writing from a read–only mode). The two roles are such that E 6 M , though
the actual role–permission relation shown in the figure is to be established later.
Figure 6(b) shows a Safecharts model for part of it, depicting how the two users
access Object1, modelled as an and state, via their respective roles. Substates of
Object1 are two or states: Status showing possible states the object can be in,
and User signifying that the object can be accessed by the two users in an ex-
clusive mode. The order in which the states are placed vertically in the diagram
of any or state corresponds to an implicit risk ordering. For example, the object
being in the state free is considered safer (more secure) than being in the state
reading , while being in the state reading safer than being in the states writing or
priv writing . In contrast, states writing and priv writing are assumed to be risk
non-comparable. In other words, a risk ordering of the form (free 4 reading),
(reading 4 writing) and (reading 4 pre writing) is assumed in Status. Similarly,
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for the state Q , a risk ordering of the form (original 4 delegated) is assumed,
indicating that the user Q accessing the object in his original role is safer than
accessing the same object in a delegated capacity. Accordingly, the transition
original;delegated , signifying the delegation of a role, is an unsafe (unsecure)
transition, whereas the transition delegated;original , signifying revocation of
the role delegation, is a safe (secure) transition.

Though the risk ordering described above has some significance in an isolated
context, it is not adequate for describing the risks involved in access control. This
is because the interdependencies of risks, depending on the roles of the users in-
volved and the operations being performed by them, need to be considered. In
other words, we need to consider risks posed by different combinations of states.
Technically speaking, this amounts to flattening of the and state Object1 into an
equivalent or state and developing a risk graph for the flattened state. As was
mentioned in Section 3.2, the required risk graph can be constructed either di-
rectly or indirectly; in this example, we follow the former. The set of sub-states of
the resulting equivalent or state and, hence, the nodes of the resulting risk graph,
consists of eight (pairs of) states: (Q ,writing), (Q , prev writing), (Q , reading),
(Q , free), (A,writing), (A, prev writing), (A, reading), (A, free). Furthermore,
since Q is itself an or state, each node involving Q in the risk graph needs
to be refined and replaced by its risk graph, that is G(Q). As a result, the
node (Q ,writing), for example, must be replaced by a risk graph consisting of
two nodes, possibly, with a risk ordering of the form (Q .delegated ,writing) 4

(Q .original ,writing). Hence, the resulting risk graph will consist of a total twelve
nodes.
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Fig. 7. The risk ordering relation and the risk graph of the user Q .

The direct approach adopted here to construct the risk graph for the flat-
tened state provides an opportunity to review the risks involved, ideally, based
on a proper security analysis of the problem concerned. For illustrative pur-
poses, we have assumed that (A, priv writing) ≺ (Q .original , priv writing);
no other distinctions are being made otherwise between A and Q when Q is
acting in his original role. For reasons of space, we have also chosen to con-
centrate here only on the behaviour of Q and, thus limiting ourselves to the
risk graph shown in Figure 7(a) giving risk ordering related to Q only. Note
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that the states (Q .original ,writing) and (Q .delegated ,writing) are treated as
non-comparable by ⊑ with many other states (nodes). As a precaution against
this being possibly due to an inadequacy of the risk assessment process, the
banded risk graph in Figure 7(b) has placed these states conservatively in the
highest risk band. This is to be taken as a flag, alerting the designer to re-
consider the risk levels of these states if the circumstances do not warrant
such an interpretation. Due to the positions of their source and target states
in the risk graph, transitions such as (Q .original , free);(Q .original ,writing),
(Q .original , free);(Q .delegated ,writing) and (Q .original , free);(Q .delegated ,
prev writing) have equal risk distances. An implication of this is that in the
event of a conflict, selecting either of these transitions is considered as a safe
non-determinism. If this is unacceptable on security grounds, then the designer
needs to verify the security policy and/or the relative risk levels of their tar-
get states, namely (Q .original ,writing), (Q .delegated ,writing) and (Q .delegated ,
prev writing).

Turning to the permission assignment, the two roles can now be distin-
guished in accordance with the principle (13). It can be seen, for example, that
α(E ) = {read ,write} and α(M ) = {read ,write, priv writing} satisfies (13). As
a result, a user belonging to the role E will no longer have access to the op-
eration priv writing in his original capacity. However, this can be allowed in
a delegated capacity provided that he satisfies a suitably specified condition
G2 expressing, perhaps, that additional measures have been taken to ensure
his temporary security credentials, for example, that he has been given addi-
tional training. Hence, the prohibition condition (¬ G2) appearing in the label
of the transition original;delegated and the enforcement condition G1 appear-
ing in that of delegated;original , G1 being identical to G2 or being a timeout.
Likewise, a pair of prohibition and enforcement conditions involving a predi-
cate G3, G3 being defined as in(Q .original), have been added to the labels of
the transitions reading;prev writing and priv writing;free respectively. Thus,
role classification arrived above allows us to deal with temporary delegation of
tasks of senior roles to individuals of more junior roles. The above is a systematic
approach for avoiding problems such as the one mentioned earlier in relation to
the conventional implementation of ACL.

6 Conclusion

Correct interpretation of Safecharts requires a sound understanding of several
important aspects of its semantics. The objective of this paper has been to
present a mathematical framework for Safecharts, with the primary aim of giv-
ing greater clarity and accuracy to key concepts used in Safecharts. These include
separation of function and safety, risk ordering, the risk graph, failures, risk na-
ture of transitions and resolution of non-determinism. In extending the notion
of risk ordering to include composite or and and states, the paper also extends
previous work by showing how to deal with interdependencies of risk at lower
levels of abstraction; this involves flattening and states and node replacement
in risk graphs. In this paper, the step semantics of Safecharts has been defined
and the mismatch between the synchronous hypothesis and the reality of trans-



20

formational behaviour of real-time reactive systems has been reconciled. Rules
on resolution of non-determinism between any conflicting transitions have also
been refined to include triggering events of transitions. Although Safecharts was
originally developed explicitly for safety-critical systems design, its various fea-
tures and mechanisms used to ensure safety are found to be equally valid in the
security domain. This has been demonstrated in this paper using, for illustrative
purposes, a simple but realistic example of delegation of roles as understood in
Role Based Access Control (rbac) in security. On–going work investigates sit-

uational events – a special kind of events which calls for alteration to the risk
ordering relation dynamically to account for unfolding scenarios brought about
by a chain of failure events.
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